当前位置:首页 > > 电源漫谈
[导读]前述文章,峰值电流模式BOOST变换器功率级小信号频域特性分析 ,我们详细探讨了峰值电流模式的功率级电路的小信号频域特性,本文通过简要设计,对其进行闭环补偿控制。同样,我们先在Mathcad中进行基本计算,之后将结果在SIMPLIS中进行验证。

前述文章,峰值电流模式BOOST变换器功率级小信号频域特性分析 ,我们详细探讨了峰值电流模式的功率级电路的小信号频域特性,本文通过简要设计,对其进行闭环补偿控制。同样,我们先在Mathcad中进行基本计算,之后将结果在SIMPLIS中进行验证。


.基于功率级计算特性计算补偿器参数

1 功率级零极点计算结果

通过前述文章,峰值电流模式BOOST变换器功率级小信号频域特性分析 ,我们计算出了系统主极点为66Hz,右半平面零点为130kHzESR零点为159kHz,直流增益为35db,这些参数将作为我们闭环设计的基础。

2 峰值电流模式BOOST变换器功率级增益曲线

3 峰值电流模式BOOST变换器功率级相位曲线

4 功率级小信号特性的关键参数


从图4上所计算出的小信号频域特性参数来看,峰值电流模式下BOOST电路是一个一阶环节,它只需要一个二型补偿器就可以进行补偿。具体来看,其低频增益较低,且没有积分特性,那么我们需要在低频下增加一个极点,同时右半平面零点和ESR零点比较接近,二者相位有一定的抵消作用,因此我们在此频率之前加一个高频极点进行高频分量衰减,同时补偿器系统需要将系统主极点作用进行抵消,而主极点是和负载关系紧密的,所以我们这里基于一定的负载进行设计,实际应用中需要考虑整个负载范围的主极点作用。

5 二型补偿器主要零极点及分压电压设计


类似于BUCK电路设计,我们基于偏置电流的方法,根据基准电压1.25V,我们计算出下分压电阻为12.5kohm,上分压电阻为137kohm,用于抵消系统主极点的零点设计在100Hz,而积分截止频率设置在50Hz,高频极点设置在100kHz,在右半平面零点和ESR零点的频率前。

6 二型补偿器结构定义

我们基于图6中的二型补偿器进行计算实际的参数值,具体结果为图7所示,这里同时给出了传递函数的表达式。

7 二型补偿器频域传递函数及零极点计算

8 所用二型补偿器增益曲线

9 所用二型补偿器相位曲线

10 实际所用补偿器参数

由于计算结果和实际物理器件可选值之间的差异,我们重新定义所用的器件值,如图10所示。

11 BOOST功率级和补偿器部分传递函数叠加

12 BOOST变换器开环传递函数的增益曲线

13 BOOST变换器开环传递函数的相位曲线


从控制器和功率级传递函数叠加的开环传函来看,增益曲线在低频段是一个积分环节的曲线,我们可以从曲线上读取一些关键参数。

14 BOOST变换器BODE图关键参数读取


从开环传递函数的BODE图上,我们得到穿越频率为1.839kHz,相位裕量为87.5C,低频增益为49dB,高于未经补偿前的35dB


.BOOST变换器峰值电流控制的SIMPLIS验证

关于SIMPLIS的基本操作,我们这里不进行介绍,读者可以查询相关文档。直接给出仿真原理图,如图15所示,此处我们在功率级仿真的原理图基础上增加了二型补偿器,及测试开环传递函数的BODE图测量仪器。

15 BOOST峰值电流模式控制闭环补偿仿真原理图


上述原理图中的补偿器参数,我们按照前述计算结果,功率级相关参数按照前述文章中的参数设计,并进行时域及频域仿真。

16 BOOST峰值电流控制闭环仿真基本时域波形


17 BOOST峰值电流模式控制闭环仿真测量参数


从基本时域波形测量来看,占空比为42.75%,电压环输出结果为152mV,输出电压为14.97V,基本符合预期的结果。功率MOSFET和续流二极管的电流RMS值也进行了测量,如图17所示。

18 BOOST峰值电流模式控制闭环仿真BODE

从频域仿真BODE图上看,闭环运行特性基本符合预期,穿越频率1.73kHz,相位裕量为86C,和前述Mathcad计算结果一致。

19 BOOST峰值电流模式控制闭环仿真BODE


我们同时在曲线上用光标读出低频10Hz下的增益为49dB,和前述计算非常吻合。


总结,本文通过基于峰值电流模式控制BOOST电路的功率级频域传递函数特性,计算补偿器传递函数特性,最终在仿真软件SIMPLIS中验证,二者结果基本一致。当然,此结果并非最优化的结果,可以根据实际需要进行进一步优化闭环控制的带宽及相位裕量等参数。


//关于知识产权:

1.本公众号主要用于个人学习笔记归纳及分享,无任何商业目的。

2.本公众号所发表言论及观点不代表本人现任公司及前任公司,如有错误请不吝指正。

3.如果认为有帮助可以分享转发,如需转载公众号内容,请留言告知。

4.有些图片来自网络,如有侵权,请联系删除。

5.有问题可通过公众号关注页或者文末添加本人微信加入技术交流群畅聊。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭