当前位置:首页 > 消费电子 > 消费电子
[导读]可能对于很多朋友来说,你那台采用14纳米工艺的电脑CPU还在工作着,但现在芯片已经开始迈向2纳米。在芯片的制造工艺上,似乎芯片制造商并没有选择停下脚步,近日台积电方面就表示,其2纳米工艺将会在2024年实现试产,在2025年实现量产。

可能对于很多朋友来说,你那台采用14纳米工艺的电脑CPU还在工作着,但现在芯片已经开始迈向2纳米。在芯片的制造工艺上,似乎芯片制造商并没有选择停下脚步,近日台积电方面就表示,其2纳米工艺将会在2024年实现试产,在2025年实现量产。但了解芯片发展的朋友都知悉,现在所谓的2纳米,包括3纳米、5纳米、7纳米等,都只是一个“文字游戏”,即该数字已经不再代表特征尺寸,仅是一个工艺代号。

具体来说,从10纳米开始,这种工艺代号形式的制造工艺就已经在业内出现,ASML方面也承认了这种现象。所以我们看到,虽然台积电号称2025年量产2纳米工艺芯片,但是在密度方面,仅比3纳米提升了10%,这已经远远达不到摩尔定律的要求。

而芯片密度的大幅降低,就直接影响到芯片的性能,所以台积电也表示,其2纳米工艺的芯片,性能只能提升10%,最多也就是15%。

了解超频的爱好者应该知道,与其如此,其实还不如超频来的直接,因为10%的性能提升,对于超频来说要显得更容易,而且几乎零成本。

所以台积电在2025年量产的2纳米,并不像其数字所显示的那样令人兴奋,然而几乎同时,中科院方面也传出了新消息。中科院微电子所方面官方宣布,其实现了性能优异的双栅a-IGZO短沟道晶体管。

相信很多朋友对此不是很理解,这样的技术具备什么样的作用呢?简单来说,当下芯片制造技术的推进,终极目的就是为了提升晶体管的集成度,也就是密度,但是因为短沟道效应,所以一直难以推进。

而a-IGZO材料是三维集成的最佳候选沟道材料之一,三维集成技术的本质,就是为提高晶体管在芯片上的集成密度。所以中科院此次的技术进展,实际上相当于在一定程度上,解决了高密度集成的问题。

IBM宣布造出了全球第一颗2nm工艺的半导体芯片。

国际商业机器公司(IBM)今天发布号称全球首创的2纳米芯片制造技术,同时表示,这项技术可让芯片速度比当今主流的7纳米芯片提升多达45%,能源效率提升多达75%。

目前许多笔记本和手机使用的都是7纳米芯片,而2纳米芯片制造技术可能还要花上数年才能投入市场。

在150平方毫米也就是指甲盖大小面积内,就能容纳500亿颗晶体管。IBM表示,在同样的电力消耗下,其性能比当前7nm高出45%,输出同样性能则减少75%的功耗。

据消息,德国《商报》发表题为《芯片之争,中国绝非无能为力》的评论称,中国是世界上最大的芯片市场,在芯片之争中,中国绝非像美国一些所谓的“战略家”认为的那样无能为力。

近年来中国已不断在为芯片业的发展注入“强心剂”。工信部近期在记者会中表示,我国将从国家层面支持芯片产业、新能源汽车行业的发展。去年7月,国务院还印发了《新时期促进集成电路产业和软件产业高质量发展的若干政策》,为我国半导体行业发展提供政策红利。

另据报道,最快在6月份,华为鸿蒙系统有望正式开始规模化推送。目前,华为HarmonyOS的官方账号已经正式开通。

2022年70%~80%的资本预算将用于2纳米、3纳米等先进工艺技术的研发。此前,老对手三星也表示将于2025年量产2纳米。去年,英特尔调整了技术路线,大踏步向2纳米进军,而IBM展示的2纳米工艺制程也着实让人惊艳了一阵子。新年伊始,2纳米作为阶段性制高点,吹响了芯片先进制程之战的号角。

在半导体全产业链中,晶圆制造一直发挥着基础核心作用。目前,随着5G、人工智能和物联网等技术不断发展,各行各业对芯片性能和能效要求越来越高。而推动工艺技术发展的方式主要有两种,一个是芯片尺寸缩微缩,一个是硅片直径增大。由于硅片直径增大涉及整条生产线设备更换,制造工艺精进微缩当前仍是芯片性能持续提升的主要驱动力。

无论如何,只要摩尔定律还存在,半导体巨头势必会抢占先进工艺制高点,其中包括台积电宣布2022年将支出近300亿美元用于2纳米、3纳米等工艺研发;去年三星宣布2022年量产3纳米,2025年量产5纳米;英特尔计划通过2纳米制程重回巅峰;而IBM展示的2纳米制程也着实惊艳了一小阵。同时,欧洲与日本政府及企业也寄望通过2纳米重振芯片制造。

无疑,全球2纳米芯片制程之战的号角已经吹响。但在这场竞逐中,各企业仍主要有“四道坎”需要迈过,包括架构技术、材料、设备和成本。其中,从目前各大厂公布的技术来看,GAAFET全栅场效应晶体管技术将会成为2纳米芯片研制的主流工艺。而二维材料和一维材料有望成为突破2纳米制程研发的潜力材料。此外,满足2纳米研发的光刻机需要2023年开放测试。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭