当前位置:首页 > > 工程师看海
[导读]基于电感器的开关架构电源有3中常见的拓扑结构,分别是BUCK降压电源、BOOST升压电源以及BUCK-BOOST负压电源,今天介绍的第4中拓扑——4开关BOB电源,在手机、汽车、嵌入式等领域都有广泛应用,它的基本工作原理是怎样的呢?有什么优势呢?

基于电感器的开关架构电源有3中常见的拓扑结构,分别是BUCK降压电源BOOST升压电源以及BUCK-BOOST负压电源,今天介绍的第4中拓扑——4开关BOB电源,在手机、汽车、嵌入式等领域都有广泛应用,它的基本工作原理是怎样的呢?有什么优势呢?

一. 4开关拓扑

4开关BOB电源全称是BUCK or BOOST升降压电源,顾名思义,既可以降压,又可以升压,兼容BUCK和BOOST电源的功能。

下图是4开关BOB电源的拓扑示意图,4个开关带一个电感,通过控制开关的导通、断开的不同状态来衍生出不同的电源架构。



二. 降压模式

当S4处于常闭、S3处于常开状态时,反复开关的管子是S1和S2,这就构成了BUCK降压结构。下图就是BUCK的结构,有S1、S2两个工作管子,这种BUCK被称为同步BUCK,效率会高一些。有两种工作周期,1:S1闭合、S2断开,对电感L1充电,见下图绿色曲线;2:S1断开、S2闭合,电感对负载放电,见下图蓝色曲线。



将上图中的S2代替为二极管也可以起到降压作用,然而效率会降低一些,二极管会消耗一部分功率,这种结构被称为非同步BUCK,只有S1一个管子动作。当S1闭合时,对电感L1充电,见下图绿色曲线;当S1断开时,电感L1通过负载——>二极管D2进行放电,见下图蓝色曲线。


对于非同步BUCK,如果在上图中SW点开关节点位置测量电压,会发现一个奇怪的负电压,如下图红色圈圈中那样,这是因为二极管需要有一个导通低电压,一般是0.7V,就刚好出现这个小小的负电压。

在历史文章中有更详细的介绍:

《为什么BUCK降压电路会出现奇怪的负电压?》:

https://www.dianyuan.com/eestar/article-3210.html


三. 升压模式

当S1处于常闭、S2处于常开状态时,反复开关的管子是S3和S4,这就构成了boost升压结构。下图就是BOOST的结构,有S3、S4两个工作管子,有两种工作周期,1:S3闭合、S4断开,对电感L1充电,见下图蓝色曲线;2:S3断开、S4闭合,电感对负载放电,见下图绿色曲线。


同样地,也可以把S4代替为二极管,依然实现升压结构。


总而言之,4开关架构电源,通过对开关进行配置,可以自由工作在降压或者是升压的模式。



四. 为什么需要BOB?

我们为什么需要BOB电源,这种电源有什么优势?

有一些对于电源噪声要求比较高的场合,我们倾向于使用低噪声的LDO,LDO的输入一般通过开关电源提供,最典型的架构是BUCK+LDO或者是BOOST+LDO。为了达到对电源的高效利用,电源系统中往往一个开关电源后面会接多路LDO,见下面示意图,比如开关电源的输入是3.0V,需要搭配多种LDO电源。


有同学会说,为什么不直接用一个BOOST声压电源来覆盖这么多种电源需求呢?

如果使用BOOST这种一刀切满足所有LDO要求的方法,假如高电压的负载没有工作时,见下图红色部分,依然使用BOOST的话,绿色LDO会额外增加功耗,因为LDO功耗与输入和输出的压差成正比。对于下图中,BOOST输出是3.5V可以满足所有LDO的需求,但是在3.3/2.9/2.8等LDO关闭时,BOOST继续输出3.5V的话,就会给LDO带来额外功耗,LDO1.0的功耗是(3.5-1.0)*Io(Io是LDO的负载电流),无论怎么降低BOOST的输出电源,它也不会低于3.0V。


不要小看这些功耗,对于移动嵌入式等产品而言,续航就是生命!

所以,升降压电源就给我们带来了更好的选择,假如高电压LDO没有工作时,升降压电源可以通过BUCK模式降低自己的输出到1.2V,这样的话LDO的功耗就会大大降低,

((1.2-1.0)*Io)/((3.5-1.0)*Io)=8%,这种架构的功耗只有原来功耗的8%,收益很明显,当然实际的功耗收益和负载的工作状态息息相关。

以上就是4开关电源的工作原理,你学废了吗?

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭