当前位置:首页 > 电源 > 电源电路
[导读]螺线管是机电致动器,具有称为柱塞的自由移动磁芯。通常,螺线管由螺旋形线圈和铁制成的动铁芯组成。 当电流通过螺线管线圈时,它会在其内部产生磁场。该磁场产生拉入柱塞的力。当磁场产生足够的力来拉动柱塞时,它会在螺线管内移动,直到达到机械停止位置。当柱塞已经在螺线管内时,磁场会产生力将柱塞固定到位。当电流从螺线管线圈中移除时,柱塞将在螺线管中安装的弹簧推动下返回其原始位置。

电磁铁原理

螺线管是机电致动器,具有称为柱塞的自由移动磁芯。通常,螺线管由螺旋形线圈和铁制成的动铁芯组成。

当电流通过螺线管线圈时,它会在其内部产生磁场。该磁场产生拉入柱塞的力。当磁场产生足够的力来拉动柱塞时,它会在螺线管内移动,直到达到机械停止位置。当柱塞已经在螺线管内时,磁场会产生力将柱塞固定到位。当电流从螺线管线圈中移除时,柱塞将在螺线管中安装的弹簧推动下返回其原始位置。

图 1 显示了螺线管的结构。


设计节能螺线管驱动器:设计理念

图1.螺线管原理图

驱动螺线管的最常见方法是在螺线管线圈中施加所需的电压。这通常可以使用配置在高端或低端的单个功率晶体管来完成。功率晶体管需要一个与螺线管并联的飞轮二极管,因为螺线管线圈具有高电感,会试图将电流推入晶体管。虽然这种方法简单且便宜,但它的功率效率不高。这是因为螺线管通常需要很大的电流来拉入柱塞,但是当拉入柱塞时,它不需要相同量的电流。在简单的驱动器方法中,当柱塞被拉入时,保持柱塞,施加到螺线管的电流主要通过其内部电阻产生热量。

解决此问题的另一种方法是使用电流调节驱动器来激活和停用螺线管。该驱动器可以在螺线管中施加峰值电流值,直到它拉入柱塞,然后,它可以将电流降低到保持值。这种策略大大降低了内部螺线管电阻消耗的功率。该驱动器的另一个优点是可以在更大的电压范围内使用螺线管。这意味着驱动器允许设计为以较低电压(例如,5 伏)运行的螺线管以较高的电源电压运行而不会损坏(例如,使用 12 伏电源)。

以下部分将描述使用SLG47105 HVPAK器件实现两个螺线管的电流调节驱动器。

GreenPAK 设计理念

使用单个 SLG47105 器件可以驱动两个不同的螺线管。SLG47105 器件将控制通过螺线管的电流,并将通知用户每个螺线管的状态(开、关或处于故障状态)。显示其内部结构的概念框图如图 2 所示。


设计节能螺线管驱动器:设计理念

图 2. 采用 SLG47105 的节能螺线管驱动器框图

该图的右上角显示了高压输出 (HVOUT) 模块的内部配置方式及其与外部螺线管的连接。连接到引脚 7 的输出配置为推挽输出,连接到引脚 8 的输出配置为开漏。此开漏输出在启动延迟后始终保持打开状态。引脚 5 在内部连接到引脚 8 的 N-Mosfet 和内部电流放大器。引脚 5 用于测量螺线管电流并将其与内部参考值进行比较,将比较结果发送到 PWM 控制器 1 块。

PWM 控制器 1 模块生成调节连接到引脚 7 和 8 的螺线管电流所需的 PWM。它有两个设定点,一个用于螺线管峰值电流,另一个用于螺线管保持电流。PWM 控制器的 On/Off 输入由其左侧的 AND 端口激活。AND 端口连接到启动延迟块和引脚 2,用作打开和关闭螺线管的外部接口。

连接到 AND 端口的启动延迟模块用于保证所有内部模块在 IC 上电时正确初始化。AND 端口的输出连接到另一个延迟块。当 PWM 控制器打开时,它被配置为将螺线管电流调节到其峰值电流值。延迟 50 毫秒后,延迟块切换 PWM 配置以将螺线管电流调节到其保持电流值。

PWM 控制器 1 模块的开/关输入也连接到多路复用器的输入之一。另一个多路复用器输入连接到频率为 1 赫兹的方波信号。多路复用器输出由 HVOUT 模块中的 FAULT 信号控制。当 FAULT 信号未指示任何故障时,开/关输入通过引脚 17 缓冲,即 SOLENOID 1 状态输出。当 FAULT 信号指示故障时,方波信号在此输出中被驱动。SOLENOID 1 STATUS 设计用于驱动外部 LED 并向用户显示螺线管状态。当 LED 以方波输出频率闪烁时,可以打开、关闭或处于故障状态。

在引脚 14 中提供了一个额外的 FAULT 输出作为漏极开路输出。该输出旨在驱动外部设备,如微控制器。

PWM 控制器 1 下方是 PWM 控制器 2,如图 2 所示,PWM 控制器 2 周围的控制结构类似于 PWM 控制器 1。

两个 FAULT 输出可以外部连接,因为它们是开漏输出,如果任何输出发生故障,它们会为外部设备提供单个 FAULT 信号。

另一个模块是 I2C;它可用于重新配置峰值和保持电流设置。

应用电路

图 3 显示了与本文一起使用的典型应用电路。


设计节能螺线管驱动器:设计理念

图 3. 典型应用的电子电路简化示意图

图 3 显示了驱动两个不同螺线管(标识为 S1 和 S2)的典型应用的简化示意图。如图所示,驱动器由连接到 5 伏电源的两个按钮控制。螺线管与一个 0.1Ω 的小电阻一起连接到各自的 HVOUT 输出。该电阻器用于允许通过螺线管进行外部电流测量,终端应用不需要此电阻器。对于 SLG47105 电流测量,两个 0.11Ω 电阻连接到引脚 5 和 12。螺线管状态输出连接到绿色 LED,故障输出连接到红色 LED。

在本文中,我们使用了两个规格完全不同的螺线管。表 1 显示了螺线管 S1 和 S2 的主要规格。

表 1. 螺线管 S1 和 S2 的规格


设计节能螺线管驱动器:设计理念

电磁阀电流设置

螺线管电流将从调节的峰值电流值开始,并在初始延迟后降低到保持电流值。我们任意定义保持电流应为标称峰值电流的 20%。根据这个定义,可以计算出保持电流中消耗的功率以及检测电阻上的相应电压。每个螺线管的理想螺线管电流、耗散功率和感应电阻器电压如表 2 所示。

表 2. 理想配置的电流、耗散功率和检测电阻器电压


设计节能螺线管驱动器:设计理念

峰值电流值是标称电压下的螺线管标称电流。保持电流的计算方法是将峰值电流乘以 0.2(20%)。峰值和保持电流计算为内部螺线管电阻上消耗的功率。检测电阻器通过 0.11Ω 的检测电阻器使用欧姆定律计算。S2 的标称线圈电阻是使用标称螺线管电压及其峰值电流值计算的。

需要注意的是,用于与 SLG47105 中的检测电阻器电压进行比较的参考电压由内部 6 位 DAC 提供。我们必须将稳压电流调整到最接近的 SLG47105 内部参考电压。考虑到这一点,选择了表 3 中所示的以下电压基准值。表 3 显示了内部电压和相应的电流。所有内部值都是所需检测电阻器电压的 8 倍,因为外部电压在内部被放大了 8 倍(在下一节中更详细地描述)。峰值和保持电流值通过检测电阻使用欧姆定律计算。

表 3. 内部电压基准以及相应的电流和耗散功率


设计节能螺线管驱动器:设计理念

表 3 中标有 (*) 的值是在计算中获得的,但这些值是不可能的,并不代表现实。对于 S2,峰值电流不需要电流调节,因为螺线管的内阻会限制电流。考虑到这一点,我们决定设置最大电流值的参考。

结论

在本文中,我们讨论了螺线管的内部结构,并概述了控制螺线管设备的应用电路。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭