当前位置:首页 > 工业控制 > 《机电信息》
[导读]摘要:随着电力系统中电力电子设备和新能源的大量接入,线路中的直流分量可能严重影响电流互感器(CT)的测量准确性。磁阀式电流互感器(MVCT)是一种新型电流互感器,能够准确补偿因铁芯饱和而发生畸变的二次电流。鉴于此,研究了MVCT频率响应理论模型,并通过实验验证了其幅频特性。

引言

电流互感器的传变性能对继电保护具有非常重要的影响。由于磁芯材料的限制,电流互感器一直存在低频特性较差的问题,这也会影响其在电力系统中的应用。具体来说,当线路电流中存在直流分量时,铁芯的磁化曲线工作点会发生偏移,严重情况下,会使铁芯发生饱和,从而导致二次电流畸变失真。故电流互感器的饱和补偿方法与新型电流互感器的研究仍是广受关注的热点。

本文在已有的研究基础上详细分析了磁阀式电流互感器(MVCT)的工作原理,建立MVCT的理论频率模型,并通过实验验证了MVCT的幅频特性。

1MVCT基本原理

磁阀式电流互感器装置的电路结构如图1所示,其所采用的铁芯结构如图2所示。

在图1中,Nl、N2分别为一、二次绕组匝数,il、i2分别为一、二次电流,R2为二次电阻。MVCT由半开口闭合铁芯、磁场传感器、一次绕组、二次绕组、二次电阻和信号调理电路组成。固定于气隙中的磁场传感器的作用是测量周向漏磁场,将测量到的磁场信号转变为电压信号。信号调理电路将二次电阻上的电压信号与磁场传感器输出的电压信号按一定比例进行相加,输出与一次电流信号成比例的电压信号,即为MVCT的输出。

在图2中,l为铁芯平均周长,l1为铁芯非气隙部分的磁路长度,l2为气隙部分的磁路长度,1为铁芯的高度,h1为气隙底部到铁芯底部的高度(0<k<1)。

根据磁势平衡skdl=N1i1+N2i2,有:

在铁芯大截面未饱和时,大截面铁芯中的磁压降k0l1很小,可以忽略。因此,在正常工作情况下,一次侧电流表达式为:

2幅频特性分析

宽频带范围的普通电流互感器等效电路如图+(3)所示,所有参数均折算到二次侧,根据MVCT的测量原理可以得知,磁场传感器的作用相当于测量励磁电流,所以其等效电路图可以用图+(5)表示,与普通电流互感器相比,磁阀式电流互感器减少了励磁支路。

图中,n为匝数比(二次比一次),i1/n为输入电流(即一次电流),Cb'/n2为一次绕组的电容,Lp为励磁电感,Rm为铁芯并联等效电阻(表征损耗),Lc为二次绕组的漏感,Rs为二次绕组的电阻,C是杂散电容,R是感测电阻,LR是感测电阻的电感,wR为普通电流互感器的二次输出电压,wMVCT为MVCT的输出电压,一次匝数为1且为穿心式。假设电流互感器在铁芯非饱和区工作。

普通电流互感器的上限截止频率fH、下限截止频率fL以及带宽Bw可近似由式(+)计算得到,可见普通电流互感器的低频特性受励磁电感严格限制。

在分析低频性能时,忽略了漏感Lc、感测电阻电感LR和杂散电容C,因为Lc和LR呈现非常低的电抗,而C在低频时表现出非常高的电抗,等效电路如图4(3)所示。

相对地,在分析高频性能时,忽略了感测电阻电感LR和二次绕组电阻Rs。二次绕组电阻Rs远低于漏感Lc。假设使用无感的感测电阻,则其电感LR小得可以忽略不计,等效电路如图4(5)所示。

容易分析得到,磁阀式电流互感器的高频传递函数RMVCT-HF(s)、低频传递函数RMVCT-LF(s)、上限截止频率fH-MVCT、下限截止频率fL-MVCT以及带宽BwMVCT近似如式(4)所示:

由此可见,磁阀式电流互感器的频带为DC~fH-MVCT。若设计得当,使杂散电容C尽可能小,则MVCT在测量范围内可以实现直流到高至兆赫兹级别交流电流的宽频带电流测量,而且是以较为简单的结构和较低的成本实现。对于具有高饱和磁密和低磁导率的铁芯材料,可以有效补偿低频特性,拓宽铁芯材料选择范围。

3实验验证

实验样机采用的铁芯外径75mm,内径40mm,高30mm,气隙长度3mm,磁阀高度比(为0.5,材料为非晶合金。一次匝数为15,二次匝数为35,二次电阻为1Q。所采用的磁场传感器为TMR2503。

使用由正弦电压源(信号发生器)和电阻串联而成的简单电路对MVCT进行频率响应实验。信号发生器的振幅设置为10V,频率从0Hz到5MHz(均处于信号处理电路的频带内),覆盖了电力系统内主要的电流频率。

实验所测得的幅频特性如图5所示。

图5幅频响应实验结果

MVCT样机装置中,二次电阻两端与信号调理电路连接,在研究其频率特性时,需要考虑信号调理模块的影响。

经测量,输出端口的等效电阻约为1.14Q,等效电容约为30.68nF,不考虑信号调理模块时,等效电阻约为1.02Q,等效电容约为9.113nF。根据式(4)可计算出考虑信号调理模块时的上限截止频率约为4.55MHz,不考虑信号调理模块时的上限截止频率约为17.12MHz,信号调理模块的设计也限制了MVCT的上限截止频率。

由图5可知,MVCT的上限截止频率比5MHz略小,与上文计算的4.55MHz相近,与式(4)较为符合。相频特性由于信号处理模块的影响与理论模型有所差异。由此可见,MVCT的后续信号宜在采样后进行数字信号处理。

4结语

MVCT是一种新型电流互感器,其克服了传统CT存在的电磁饱和问题,具备良好的低频特性。本文推导了MVCT的频率特性模型,并通过实验验证频响模型的准确性。实验样机的通频带为0~4.6MHz,基本涵盖电力系统内主要的电流频率。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭