当前位置:首页 > 技术学院 > 技术解析
[导读]为增进大家对处理器的认识,本文将对处理器的发展历史以及协处理器予以介绍。

处理器是我们经常会听到的词汇,我们的智能设备中都有处理器,比如手机处理器。为增进大家对处理器的认识,本文将对处理器的发展历史以及协处理器予以介绍。如果你对处理器具有兴趣,不妨和小编一起继续往下阅读哦。

一、处理器发展历史

(1)第一阶段(1971年-1973年)。这是4位和8位低档微处理器时代,代表产品是Intel 4004处理器。

1971年,Intel生产的4004微处理器将运算器和控制器集成在一个芯片上,标志着CPU的诞生; 1978年,8086处理器的出现奠定了X86指令集架构, 随后8086系列处理器被广泛应用于个人计算机终端、高性能服务器以及云服务器中。

(2)第二阶段(1974年-1977年)。这是8位中高档微处理器时代,代表产品是Intel 8080。此时指令系统已经比较完善了。

(3)第三阶段(1978年-1984年)。这是16位微处理器的时代,代表产品是Intel 8086。相对而言已经比较成熟了。

(4)第四阶段(1985年-1992年)。这是32位微处理器时代,代表产品是Intel 80386。已经可以胜任多任务、多用户的作业。

1989 年发布的80486处理器实现了5级标量流水线,标志着CPU的初步成熟,也标志着传统处理器发展阶段的结束。

(5)第五阶段(1993年-2005年)。这是奔腾系列微处理器的时代。

1995 年11 月,Intel发布了Pentium处理器,该处理器首次采用超标量指令流水结构,引入了指令的乱序执行和分支预测技术,大大提高了处理器的性能, 因此,超标量指令流水线结构一直被后续出现的现代处理器,如AMD(Advanced Micro devices)的锐龙、Intel的酷睿系列等所采用。

(6)第六阶段(2005年至2021年)。处理器逐渐向更多核心,更高并行度发展。典型的代表有英特尔的酷睿系列处理器和AMD的锐龙系列处理器。

二、协处理器

协处理器(coprocessor),一种芯片,用于减轻系统微处理器的特定处理任务。

协处理器,这是一种协助中央处理器完成其无法执行或执行效率、效果低下的处理工作而开发和应用的处理器。这种中央处理器无法执行的工作有很多,比如设备间的信号传输、接入设备的管理等;而执行效率、效果低下的有图形处理、声频处理等。为了进行这些处理,各种辅助处理器就诞生了。需要说明的是,由于现在的计算机中,整数运算器与浮点运算器已经集成在一起,因此浮点处理器已经不算是辅助处理器。而内建于CPU中的协处理器,同样不算是辅助处理器,除非它是独立存在。

1.特定处理任务

例如,数学协处理器可以控制数字处理;图形协处理器可以处理视频绘制。例如,intel pentium 微处理器就包括内置的数学协处理器。

2.内核相连

协处理器可以附属于ARM处理器。一个协处理器通过扩展指令集或提供配置寄存器来扩展内核处理功能。一个或多个协处理器可以通过协处理器接口与ARM内核相连。

协处理器可以通过一组专门的、提供load-store类型接口的ARM指令来访问。例如协处理器15(CP15),ARM处理器使用协处理器15的寄存器来控制cache、TCM和存储器管理。

3.扩展指令集

协处理器也能通过提供一组专门的新指令来扩展指令集。例如,有一组专门的指令可以添加到标准ARM指令集中,以处理向量浮点(VFP)运算。

这些新指令是在ARM流水线的译码阶段被处理的。如果在译码阶段发现是一条协处理器指令,则把它送给相应的协处理器。如果该协处理器不存在,或不认识这条指令,则ARM认为发生了未定义指令异常。这也使得编程者可以用软件来仿真协处理器的行为(使用未定义指令异常服务子程序)。

4.内部结构

协处理器80x87的内部可分为二个主要部分:控制部件(CU)和数值执行部件(NEU)。

控制部件(CU)把协处理器接到CPU的系统总线上,协处理器和CPU都监视正在执行的指令流。如果当前将要执行的指令是协处理器指令(即:ESCape指令),那么,协处理器会自动执行它,否则,该指令将交给CPU来执行。

数值执行部件(NEU)复制执行所有的协处理器指令,它有一个用8个80位的寄存器组成的堆栈,该堆栈用于以扩展精度的浮点数据格式来存放数学指令的操作数和运算结果。在协处理器指令的执行过程中,要么指定该堆栈寄存器中的数据,要么使用压栈/出栈机制来从栈顶存放或读取数据。

在NEU部件中,还有一些记录协处理器工作状态的寄存器,如:状态寄存器、控制寄存器、标记寄存器和异常指针寄存器等。

以上便是此次小编带来的处理器相关内容,通过本文,希望大家对处理器具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭