当前位置:首页 > 显示光电 > 光机电领域
[导读]提到汽车内饰照明光学,人们或许会联想到门板上起装饰作用的的氛围灯、用于阅读书籍或读物的阅读灯、方便驾驶员观察数据的仪表灯。据不完全统计,仅汽车内部就存在至少20处营造氛围的辅助用灯。其中Lightguide与Lightpipe一直是照明灯具中最基本与重要的元件之一。有鉴于此,光学产品的设计与优化常常被视作复杂且困难的工作。现如今,Ansys Speos可以提供客户众多设计自由度,通过Ansys强大的Workbench平台,轻松实现光学产品的优化迭代。

概述
提到汽车内饰照明光学,人们或许会联想到门板上起装饰作用的的氛围灯、用于阅读书籍或读物的阅读灯、方便驾驶员观察数据的仪表灯。据不完全统计,仅汽车内部就存在至少20处营造氛围的辅助用灯。其中Lightguide与Lightpipe一直是照明灯具中最基本与重要的元件之一。有鉴于此,光学产品的设计与优化常常被视作复杂且困难的工作。现如今,Ansys Speos可以提供客户众多设计自由度,通过Ansys强大的Workbench平台,轻松实现光学产品的优化迭代。

 


工作流程
在本案例中,我们介绍一个基于汽车按键开关的照明设计与优化工作流。

#1 初始模型

#2 光导设计

#3 光导优化

#4 结果评估


1.初始模型

以往,在没有引入光学软件的情况下,用户会根据已有的工程经验完成初始模型结构。

此时只需将CAD数据导入Ansys Speos,设定光源、材料、探测器,合适模拟算法后,就可以准确的描述光与物体的相互作用,分析其光学性能。本案例中字符是由4个区域组成,采用RMS Contrast评估均匀性时,需要利用测量工具定义4个轮廓,可知RMS Contrast (P9-P11)的数值并不理想。Ansys Speos的LXP分析功能可观察系统的光路,了解光线折损细节,同时也可对材料进行更替后,得到最终的初始条件。更换材料模拟后,P9-P11数值相对平稳,但核心轮廓P12暗区较多。

 

2.光导设计

Ansys Speos Optical Part Design是一个专业的光学设计模块,该模块能实现非成像照明领域中几乎所有的光学结构设计。

1) 光导设计——Lightguide设计模块将初始导光结构进行再设计。Lightguide包含光导齿的Step、Length、Offset、Start/End angle,以及起始与末端的距离等参数;

2) 输入参数变量——利用Publish Parameters功能将Lightguide的参数变量发布出来,用于Workbench的输入变量;

3) xml文件——通过对.xmp文件进行后处理设置,对评估目标进行定义设定,然后导出生成.xml文件。评估目标为模型的输出参数变量,如均匀性(RMS Contrast),平均值,最大值,最小值等。本案例的评估参数为 各轮廓的RMS Contrast数值;

在初始设计阶段,配合Live Preview的高效预览功能,可在短时间内得到一个相对不错的结果。整体RMS Contrast低于0.5,此时P9会成为后续优化的主要目标。

 

3.光导优化

Ansys Workbench 是一个强大的协同仿真平台,它可以实现Ansys Speos优化变量与目标的发布,具体优化迭代可以交给软件进行自动化的流程。Ansys Workbench操作界面中,设置好输入/输出参数,并对输入参数变量进行优化区间设置,对输出参数进行目标约束。

案例选取了光导的8个设置参数 (P1-P8) 作为输入参数变量,字符4个轮廓的RMS Contrast (P9-P12) 作为输出参数。直接优化算法会根据输入/输出参数设计函数关系来确认优化的迭代次数,并筛选出最佳设计点,同时可保留每个设计点的结果文件及优化结构模型。

 

4.结果评估

经过327次的软件迭代后,我们找到第264次仿真为最优结果。该结果与初始状态相比有了极大的改善,字符轮廓P9-P12的RMS contrast相对数值很低,满足产品设计要求。

 

结束语

Ansys Speos可完成光学系统的性能评估,同时Optical Part Design模块提供多种方法进行光导设计。本案例模型简单,优化变量与目标相对较少,采用Workbench平台的Direct Optimization功能即可完成优化。假如针对复杂的模型结构且多变量与目标的工况时,建议用户采用optiSLang工具完成更为复杂与挑战的工程项目。设计前期如果没有模型需要光学验证,可以直接忽略流程一。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭