当前位置:首页 > 电源 > 电源-能源动力
[导读]那么,哪种 PWM 技术最适合您的电机控制应用?到目前为止,我们已经研究了三种不同的 PWM 技术。有些可以将能量再生回直流电源,有些则不能。但它们都有一个共同特征:单极电压波形。换句话说,对于任何给定的 PWM 周期,电机电压波形在 Vbus 和地之间或 –Vbus 和地之间转换。在这篇文章中,我们将研究双极PWM 技术的主张。对于每个 PWM 周期,电机电压波形在 Vbus 和 –Vbus 之间转换,产生的电机电压波形幅度是单极 PWM 的两倍。为此,我们将连接 H 桥。

那么,哪种 PWM 技术最适合您的电机控制应用?到目前为止,我们已经研究了三种不同的 PWM 技术。有些可以将能量再生回直流电源,有些则不能。但它们都有一个共同特征:单极电压波形。换句话说,对于任何给定的 PWM 周期,电机电压波形在 Vbus 和地之间或 –Vbus 和地之间转换。在这篇文章中,我们将研究双极PWM 技术的主张。对于每个 PWM 周期,电机电压波形在 Vbus 和 –Vbus 之间转换,产生的电机电压波形幅度是单极 PWM 的两倍。为此,我们将连接 H 桥。

我们不再有正向/反向信号的事实怎么样。对于双极性 PWM,正向和反向信息编码在 PWM 信号本身中。假设没有负载,占空比超过 50% 的 PWM 值会导致正向运动,占空比低于 50% 的值会导致反向运动。对于那里的机械工程师来说,这在电气上相当于静液压无级变速器 (CVT)。有了这样的系统,您就没有单独的前进档和倒档。您只需移动摇杆即可同时控制速度和方向,中间位置对应零速。

双极 PWM 技术本质上是一种四象限技术。只要施加的平均电机电压与电机的反电动势电压具有相同的极性,并且幅度大于反电动势,则电机将以电动模式运行。您可以单击此处观看使用双极 PWM 的象限 1 运行模拟。但是,如果施加的平均电机电压与反电动势的极性相同,但其幅值小于反电动势,则电机将以发电模式运行。您可以单击此处观看双极 PWM 的象限 4 运行模拟。

双极 PWM 技术的另一个优点是它只需要来自处理器的一个 PWM 信号(如果死区时间是在 PWM 模块本身内生成的,则需要两个)。假设死区时间由 FET 栅极驱动器在外部提供,这意味着在具有六个独立 PWM 的处理器上可以使用双极 PWM 驱动多达六个直流电机!

但也许双极 PWM 的最大优势在于,无论 PWM 信号处于何种状态,电机电流始终流过单个分流电阻器。因此,既然我们可以持续查看电机电流,那么问题就变成了,“什么时候采样电流波形?虽然我打算在以后的文章中更详细地处理电流采样,但让我在这里简要介绍一下。在大多数情况下,您希望获得平均值电机电流作为时间的函数。但问题是电流波形上对应于平均电流值的点将出现在 PWM 周期内的不同时间,具体取决于占空比是多少。因此,我们要么必须使用定时器在 PWM 波形内的不同时间触发 ADC,具体取决于命令的占空比,要么……

我们可以使用中心对齐的PWM。在大多数情况下,我们选择使用中心对齐的 PWM,因为两个独立的 PWM 信号之间存在谐波相互作用。但在这种情况下,我们只有一个 PWM 信号。那么为什么使用中心对齐的 PWM 有帮助呢?在这种情况下,它是如何中心对齐的 PWM 在 PWM 模块中创建,在应用于双极 PWM 时具有独特的优势。参考下图,可以使用三角计数器波形生成中心对齐的 PWM,其中计数器向上计数到最大模值,然后翻转并向下计数到最小模值,依此类推。随着调制电压的变化,PWM 脉冲宽度也发生变化,使得载波波峰和波谷分别出现在低脉冲宽度和高脉冲宽度的中心。如果我们忽略死区时间引起的任何延迟,我们会看到电流的平均值也在载波到达峰值或谷值时出现!很整洁吧?在我们的 C2000 处理器上使用的 PWM 模块上,ADC 触发器可以在计数器峰值和谷值处生成,然后可用于在电流波形等于其平均值时对电流进行采样。事实上,使用双极 PWM,您有两次机会在一个 PWM 周期内对电机电流进行采样,这使您可以根据需要以两倍于 PWM 的频率运行数字电流环路。

重建电机电流波形时出现的另一个问题是,对于非常窄的脉冲宽度,分流信号仅在非常短的时间内反映电机电流,并且可能太短而无法获得可靠的读数。但是,对于双极性 PWM,如果其中一个 PWM 状态的脉冲宽度太短,您可以简单地切换到另一个 PWM 状态,其中分流信号会相应地变长!因此,您始终可以保证在每个 PWM 周期内至少有一个间隔(无论占空比值如何),其中分流信号宽度足够宽,可以轻松方便地准确读取电机电流。

然而,双极 PWM 技术确实存在一个值得注意的缺点:与单极 PWM 技术相比,电机电压波形包含更多的谐波成分。下图比较了单极性和双极性 PWM 电压波形(减去直流分量)的归一化 RMS 内容,作为从 -1 到 +1 扫描 PWM 占空比的函数。这些额外的谐波不仅会导致更高的电流纹波,还会导致电机额外发热。这就是为什么双极 PWM 技术通常仅限于具有高电气时间常数的电机,可以更好地滤除这些谐波。如果电机的电气时间常数不高,则必须经常提高 PWM 频率以减少电流纹波。然而,这会增加 H 桥中的开关损耗,

然而,在某些应用中,即使是这种缺点也可以转化为优于单极 PWM 的优点。有时您需要非常快速地调整电机电流(例如步进电机上的高频微步)。事实上,某些应用会在电流波形上需要快速转换电流的特定点从单极 PWM 过渡到双极 PWM。

可在此处找到 VisSim 仿真,该仿真比较了以相同负载运行的相同电机上的单极和双极 PWM 。我鼓励你玩这个模拟,看看你是否可以凭经验验证上图。在我们的下一篇文章中,我们将探索另一种单极 PWM 技术,该技术实际上可以使电机看到的 PWM 频率加倍,同时仍以常规 PWM 频率切换晶体管。它还提供了一个了解标准三相正弦 PWM 工作原理的跳板。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭