当前位置:首页 > 单片机 > 单片机
[导读]从事单片机应用的开发人员都有过这样的经历:将调试好的样机投入现场进行实际运行时,总会出现这样或那样的问题。有的一开机就失灵,有的时好时坏,让人不知所措。为什么实验室能正常工作,到了现场就有问题呢? 主要原因是系统没有采取抗干扰措施,或措施不力。为此,本文专门介绍单片机应用系统的抗干扰技术,以增强产品在实际环境中的生存能力。

从事单片机应用的开发人员都有过这样的经历:将调试好的样机投入现场进行实际运行时,总会出现这样或那样的问题。有的一开机就失灵,有的时好时坏,让人不知所措。为什么实验室能正常工作,到了现场就有问题呢? 主要原因是系统没有采取抗干扰措施,或措施不力。为此,本文专门介绍单片机应用系统的抗干扰技术,以增强产品在实际环境中的生存能力。

干扰源及其分类

一、干扰的含义

所谓干扰,一般是指有用信号以外的噪声,在信号输入、传输和输出过程中出现的一些有害的电气变化现象。这些变化迫使信号的传输值、指示值或输出值出现误差,出现假象。

干扰对电路的影响,轻则降低信号的质量,影响系统的稳定性;重则破坏电路的正常功能,造成逻辑关系混乱,控制失灵。

二、干扰源的分类

1. 从干扰的来源划分

1) 内部干扰

内部干扰是应用系统本身引起的各种干扰,包括固定干扰和过渡干扰两种。固定干扰是指信号间的相互串扰、长线传输阻抗失配时反射噪声 、负载突变噪声以及馈电系统的浪涌噪声等。过渡干扰是指电路在动态工作时引起的干扰。

2) 外部干扰

外部干扰是由系统外部窜入到系统内部的各种干扰,包括某些自然现象(如闪电、雷击、地球或宇宙辐射等) 引起的自然干扰和人为干扰(如电 台、车辆、家用电器、电器设备等发出的电磁干扰,以及电源的工频干扰)。 一般来说,自然干扰对系统影响不大,而人为干扰则是外部干扰的关键 。图 9.1 是上述两种干扰源的示意图。

图 9.1 内部和外部干扰示意图

① 装置开口或缝隙处进入的辐射干扰(辐射)

② 电网变化干扰(传输)

③ 周围环境用电干扰(辐射、传输 、感应)

④ 传输线上的反射干扰(传输)

⑤系统接地不妥引入的干扰(传输 、感应)

⑥ 外部线间串扰(传输 、感应)

⑦逻辑线路不妥造成的过渡干扰(传输)

⑧线间串扰(感应、传输)

⑨ 电源干扰(传输)

⑩ 强电器引入的接触电弧和反电动势干扰(辐射、传输 、感应)

⑪ 内部接地不妥引入的干扰(传输)

⑫ 漏磁感应(感应)

⑬ 传输线反射干扰(传输)

⑭ 漏电干扰(传输)

2.按干扰出现的规律划分

1) 固定干扰

在系统邻近固定的电气设备运行时接收的干扰属固定干扰。例如,一个系统中既有“强电”部分,又有“弱电”部分,作为整个系统的工作是有节奏的,按规定的程序先后动作。对这样的系统,“强电”设备的启/停就有可能引入一个 固定时刻的干扰,使系统中的数字逻辑电路出现错误。

2) 半固定干扰

半固定干扰是指那些偶尔使用的电气设备(如行车 、电钻等) 引起的干扰。

3) 随机干扰

随机干扰属偶发性干扰。如闪电、供电系统继电保护的动作、汽车的打火等。

半固定干扰和随机干扰的区分在于:前者是可预计的,后者是突发性的。

3.从干扰与输入信号的关系划分

1) 串模干扰

串模干扰又称常态干扰、横向干扰,这种干扰表现为干扰信号和有用信号串接在一起,如图 9.2(a) 所示。干扰可能是信号源本身产生的,也可能是引线上感应的。它叠加在有用信号之上,成为有用信号的一部分,直接送到系统的输入端,影响很大。

图 9.2 串模干扰和共模干扰

(a) 串模干扰; (b) 共模干扰

2) 共模干扰

共模干扰又称共态干扰、纵向干扰。这种干扰出现在输入信号端和系统本体接地之间,如图 9.2(b) 所示,主要是由于两者接地之间存在干扰电压引起的。这种干扰主要来源于 50 Hz 交流电源的接地系统在大地的电位分布,以及某些电气设备通过接地系统的电流所引起的。

图 9.3 给出了信号为直流电压时串模干扰与共模干扰的波形。

图 9.3 串模干扰与共模干扰波形

(a) 直流信号; (b) 串模干扰; (c) 共模干扰; (d) 串模干扰与共模干扰共同作用

另外,干扰还可以从形式、产生和传播方式等方面进行分类,参见表 9.1 。尽管干扰的分类多种多样,在单片机应用系统中,我们将以干扰传播方式分类方法为主,讨论串模干扰和共模干扰的抑制方法。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭