当前位置:首页 > 电源 > 电源电路
[导读]当同时需要高直流精度和高带宽时,可能难以实现。工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样 出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器。根据电路配置,有几种有效的方法,包括构建复合放大器或围绕高速放大器实施伺服环路。

当同时需要高直流精度和高带宽时,可能难以实现。工程师常常面对各种挑战,需要不断开发新应用,以满足广泛的需求。一般来说,这些需求很难同时满足。例如一款高速、高压运算放大器(运放),同时还具有高输出功率,以及同样 出色的直流精度、噪声和失真性能。市面上很少能见到兼具所有这些特性的运算放大器。根据电路配置,有几种有效的方法,包括构建复合放大器或围绕高速放大器实施伺服环路。

将两个运算放大器组合在一起,就能将各自的优势特性集成于一体。这样,与具有相同增益的单个放大器相比,两个运算放大器组合可以实现更高的带宽。

复合放大器的配置与同相放大器的配置类似,后者具有两个外部操作电阻R1和R2。将两个串联在一起的运算放大器看作一个放大器。总增益(G)通过电阻比设置,G = 1 + R1/R2。如果R3与R4电阻比发生变化,会影响放大器2 (G2)的增益,也会影响放大器1 (G1)的增益或输出电平。但是,R3和R4不会改变有效总增益。如果G2降低,G1将增加。

复合放大器的另一个特性是具备更高带宽。相比单个放大器,复合放大器的带宽更高。所以,如果使用两个完全相同的放大器,其增益带宽积(GBWP)为100 MHz,增益G = 1,那么–3 dB带宽可以提高约27%。增益越高,效果越明显,但最高只能达到特定限值。一旦超过限值,可能会不稳定。两个增益分布不均时,也会出现这种不稳定的情况。一般来说,在两个放大器的增益均等分布的情况下,可获得最大带宽。采用上述值(GBWP = 100 MHz、G2 = 3.16、G = 10),在总增益为10时,两个放大器组合的–3 dB带宽可以达到单个放大器的3倍。

对于反相电路配置,使用配置为积分器的运算放大器的直流伺服环路是最合适的。对于同相电路,基于运算跨导放大器 (OTA) 的直流伺服环路将是最简单的实现方式。这两个电路如下图 1 和图 2 所示。如何搭建高速放大器电路,实现高直流精度和高带宽

 

图 1:用于反相放大器配置的直流伺服回路如何搭建高速放大器电路,实现高直流精度和高带宽

 

图 2:非反相放大器配置的直流伺服回路

无论您是否要使用去耦电容,这两个电路都是交流耦合的。我在这里用去耦电容表示电路,以强调等效电路将是交流耦合的。

伺服回路实际上移除了直流电压并用参考电压 (Vref) 代替它。系统的精度仅受伺服回路中使用的设备的精度和回路速度的限制。在这两个电路中,您必须平衡高通带宽与伺服放大器的响应时间。如果伺服放大器太快或信号变化太慢,信号将被伺服,对其完整性造成灾难性后果。在实现精确测量之前,系统还将有一个初始稳定时间。

对于基于积分器的电路,伺服放大器的输出电压增加与信号放大器的输出直接相关。由于 DC 增益为 1-V/V,信号放大器的输入随后将在输出端看到。由 R4 和 C3 形成的低通滤波器将限制带宽并最大限度地减少对信号放大器的噪声影响。伺服放大器通常是精密放大器,例如OPA277或OPA333。

非反相配置的直流伺服回路对积分器的行为相同,直到OPA615的 SOTA(采样 OTA)输出。引脚 10 和 11 之间的电压差将产生电流输出,为 Chold 电容器充电。然后将产生的电压馈送到另一个 OTA。出现在该 OTA B 输入端(引脚 3)的电压作为电压镜像到 E 输入端,并通过电阻 R E转换为电流。电流最终镜像到 C 输出(引脚 12)并插入 OPA656 的反相节点。电流将继续加到该节点,直到引脚 10 和 11 两端的电压为零。

现在为了增加一些复杂性,SOTA 可用于对特定时间进行采样,在此期间没有信号达到某个 DC 值,实际上将整个信号向上或向下移动。在这种模式下,电路的行为类似于直流恢复电路。如果 SOTA 始终采样,则只能通过在引脚 10 上插入 RC 滤波器来实现 DC 校正。此 RC 滤波器与图 1 中的 R4、C3 滤波器具有相同的效果。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭