当前位置:首页 > 智能硬件 > 人工智能AI
[导读]从1990到2012年,机器学习逐渐走向成熟和应用,在这20多年里机器学习的理论和方法得到了完善和充实,可谓是百花齐放的年代。代表性的重要成果有:支持向量机(SVM,1995)、AdaBoost算法(1997)、循环神经网络和LSTM(1997)、流形学习(2000)、随机森林(2001)。

从1990到2012年,机器学习逐渐走向成熟和应用,在这20多年里机器学习的理论和方法得到了完善和充实,可谓是百花齐放的年代。代表性的重要成果有:支持向量机(SVM,1995)、AdaBoost算法(1997)、循环神经网络和LSTM(1997)、流形学习(2000)、随机森林(2001)。

下面我们对部分机器学习代表算法进行介绍。

⚫AdaBoost

Adaptive Boosting或称为AdaBoost,是多种学习算法的融合。它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,然后将每次训练得到的分类器融合起来,作为最终的决策分类器。

AdaBoost是最常用的算法,它可用于回归或者分类算法。相比其他机器学习算法,它克服了过拟合的问题,通常对异常值和噪声数据敏感。为了创建一个强大的复合学习器,AdaBoost使用了多次迭代。因此,它又被称为“Adaptive Boosting”。通过迭代添加弱学习器,AdaBoost创建了一个强学习器。一个新的弱学习器加到实体上,并且调整加权向量,作为对前一轮中错误分类的样例的回应。得到的结果,是一个比弱分类器有更高准确性的分类器。

AdaBoost有助于将弱阈值的分类器提升为强分类器。上面的图像描述了AdaBoost的执行,只用了简单易于理解的代码并且在一个文件中就实现了。这个函数包含一个弱分类器和boosting组件。弱分类器在一维的数据中尝试去寻找最理想的阈值来将数据分离为两类。boosting组件迭代调用分类器,经过每一步分类,它改变了错误分类示例的权重。因此,创建了一个级联的弱分类器,它的行为就像一个强分类器。

目前,对Adaboost算法的研究以及应用大多集中于分类问题,同时近年也出现了一些在回归问题上的应用。Adaboost系列主要解决了:两类问题、多类单标签问题、多类多标签问题、大类单标签问题和回归问题。它用全部的训练样本进行学习。

⚫K-均值算法(K-Means)

K-均值是著名聚类算法,它找出代表聚类结构的k个质心。如果有一个点到某一质心的距离比到其他质心都近,这个点则指派到这个最近的质心所代表的簇。依次,利用当前已聚类的数据点找出一个新质心,再利用质心给新的数据指派一个簇。

⚫支持向量机(SVM)

支持向量机(Support Vector Machine,SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类(binary classification)的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。基本思想是:找到集合边缘上的若干数据(称为支持向量(Support Vector)),用这些点找出一个平面(称为决策面),使得支持向量到该平面的距离最大。由简至繁的SVM模型包括:

1)当训练样本线性可分时,通过硬间隔最大化,学习一个线性可分支持向量机;2)当训练样本近似线性可分时,通过软间隔最大化,学习一个线性支持向量机;

3)当训练样本线性不可分时,通过核技巧和软间隔最大化,学习一个非线性支持向量机;

在分类问题中,很多时候有多个解,在理想的线性可分的情况下其决策平面会有多个。而SVM的基本模型是在特征空间上找到最佳的分离超平面使得训练集上正负样本间隔最大,SVM算法计算出来的分界会保留对类别最大的间距,即有足够的余量。

在解决线性不可分问题时,它通过引入核函数巧妙地解决在高维空间中的内积运算,从而很好地解决了非线性分类问题。通过核函数的引入,将线性不可分的数据映射到一个高纬的特征空间内,使得数据在特征空间内是可分的。

⚫人工神经网络ANN(Artificial Neural Network)

人工神经网络ANN(Artificial Neural Network)是由大量处理单元互联组成的非线性、自适应信息处理系统。它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。其基本过程可以概述如下:外部刺激通过神经末梢转化为电信号,传导到神经细胞(又叫神经元);无数神经元构成神经中枢;神经中枢综合各种信号,做出判断;人体根据神经中枢的指令,对外部刺激做出反应。

人工神经网络经历了漫长的发展阶段。最早是上个世纪六十年代提出的“人造神经元”模型,叫做“感知器”(perceptron)。感知机模型是机器学习二分类问题中的一个非常简单的模型。

随着反向传播算法、最大池化(max-pooling)等技术的发明,神经网络进入了飞速发展的阶段。神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。典型的人工神经网络具有以下三个部分:

结构(Architecture)指定了网络中的变量和它们的拓扑关系。

激励函数(Activity Rule)大部分神经网络模型具有一个短时间尺度的动力学规则,来定义神经元如何根据其他神经元的活动来改变自己的激励值。

学习规则(Learning Rule)指定了网络中的权重如何随着时间推进而调整。

人工神经网络具有四个基本特征:非线性、非局限性、非常定性和非凸性。

人工神经网络的特点和优越性,主要表现在三个方面:具有自学习功能、具有联想存储功能和具有高速寻找最优解的能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭