当前位置:首页 > 技术学院 > 技术解析
[导读]为增进大家对薄膜电容的认识,本文将对薄膜电容的优势和用途以及引起薄膜电容故障的常见因素予以介绍。

薄膜电容凭借其良好的电工性能和高可靠性,成为推动上述行业更新换代不可或缺的电子元件。为增进大家对薄膜电容的认识,本文将对薄膜电容的优势和用途以及引起薄膜电容故障的常见因素予以介绍。如果你对薄膜电容具有兴趣,不妨继续往下阅读哦。

一、薄膜电容的优势及用途

薄膜电容是以金属箔作为电极,和聚乙酯、聚丙烯或聚苯乙烯等塑料薄膜从两端重叠后,有感或无感卷绕制成的电容器。因为它以和聚乙酯、聚丙烯或聚苯乙烯等塑料薄膜作为电介质而制成,因此又称为塑料薄膜电容。

薄膜电容因绝缘阻抗高,频率特性好,无极性,介质损失小等优势用于电子、家用电器、通讯、电力等多个行业,也用于高频滤波、高频旁路、模拟电路中。那么薄膜电容在不同的电路中分别起到什么作用呢,一起来看看吧。

通常的薄膜电容器其制法是将铝等金属箔当成电极和塑料薄膜重叠后卷绕在一起制成。但是另外薄膜电容器又有一种制造法,叫做金属化薄膜(Metallized Film),其制法是在塑料薄膜上以真空蒸镀上一层很薄的金属以做为电极。如此可以省去电极箔的厚度,缩小电容器单位容量的体积,所以薄膜电容器较容易做成小型,容量大的电容 器。例如常见的MKP电容,就是金属化聚丙烯膜电容器(Metailized Polypropylene Film Capacitor)的代称,而MKT则是金属化聚乙酯电容(Metailized Polyester)的代称。

(1)并联薄膜电容器,又称为移动薄膜电容,主要用于补偿电力系统感性负荷的无功功率,用于提高功率因数,提高电压质量,减少电路中线路损耗。

(2)串联薄膜电容器,串联在工频高压输、配电线路中,用于补偿线路的分布感抗,提高系统的静态稳定性和动态稳定性,提高线路的电压质量,大大增加了送电距离和提高了输送电能力。

(3)电热薄膜电容器,用于频率为40~24000赫的电热设备系统中,以提高功率因数,提高回路的电压或频率等特性。

(4)耦合薄膜电容器,主要用于高压电力线路的高频通信、测量、控制和保护。

(5)断路器薄膜电容器,原来的名字叫作均压电容器,并联在高压断路器断口上起到均压作用,使高压断路器的各个断口间的电压在分段过程中和断开时均匀,可以提高断路器的灭弧特性,提高分断能力。

二、哪些因素易引起薄膜电容故障

薄膜电容以金属箔为电极、和聚乙酯、聚丙烯或聚苯乙烯等塑料薄膜以及其它材料卷绕制成的电容,外部使用环氧树脂包封,阻燃性能好。

由于薄膜电容有着无极性,绝缘阻抗高,频率特性好,介质损失小等优良的特性被广泛应用于各个电子领域当中,也经常被用在模拟电路中。然而薄膜电容也会因为某些原因出故障而不能使用。

1、工作环境温度高

薄膜电容在-40℃~+105℃温度环境下能正常工作,但是一旦超出工作温度范围,会加速薄膜电容的热老化,工作使用时间不仅减少,严重时薄膜电容还会炸裂。

2、工作电流选用不当

电路中电流值要小于薄膜电容允许经过的电流值,否则会造成薄膜电容发热,长期下来,薄膜电容使用年限不仅下降,严重时还会发生炸裂引燃。

3、超出规定的工作电压

电路上施加的电压过高,远超出了薄膜电容的额定工作电压,在高电压的作用下,薄膜电容内部会产生局部放电导致薄膜电容击穿不能使用。

4、存在谐波电流

高次谐波电流叠加与基波电流,导致流入的薄膜电容总电流增大;高次谐波在系统感抗和薄膜电容容抗间引起并联谐振,使流入薄膜电容的电流增加;薄膜电容对某一高次谐波发生局部串联谐振,引起薄膜电容负荷超载,薄膜电容内部膨胀,从而引发爆炸导致故障。

以上就是引起薄膜电容发生故障的原因了,在使用薄膜电容前要先把这些引起故障的因素排除,选购薄膜电容时一定要选择正规的品质好的薄膜电容。

以上便是此次小编带来的薄膜电容相关内容,通过本文,希望大家对薄膜电容已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,小编将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭