当前位置:首页 > 技术学院 > 技术解析
[导读]为增进大家对传感器的认识,本文将对惯性传感器的应用、惯性传感器的分类、构成以及惯性传感器与普通传感器的融合予以介绍。

传感器的使用极为广泛,不同应用领域中,又会使用到具体的子类型传感器。为增进大家对传感器的认识,本文将对惯性传感器的应用、惯性传感器的分类、构成以及惯性传感器与普通传感器的融合予以介绍。如果你对惯性传感器具有兴趣,不妨继续往下阅读哦。

一、惯性传感器的应用

低精度MEMS惯性传感器作为消费电子类产品主要用在手机、GPS导航、游戏机、数码相机、音乐播放器、无线鼠标、PD、硬盘保护器、智能玩具、计步器、防盗系统。由于具有加速度测量、倾斜测量、振动测量甚至转动测量等基本测量功能,有待挖掘的消费电子应用会不断出现。

中级MEMS惯性传感器作为工业级及汽车级产品,则主要用于汽车电子稳定系统(ESP或ESC)GPS辅助导航系统,汽车安全气囊、车辆姿态测量、精密农业、工业自动化、大型医疗设备、机器人、仪器仪表、工程机械等。

高精度的MEMS惯性传感器作为军用级和宇航级产品,主要要求高精度、全温区、抗冲击等指数。主要用于通讯卫星无线、导弹导引头、光学瞄准系统等稳定性应用;飞机/导弹飞行控制、姿态控制、偏航阻尼等控制应用、以及中程导弹制导、惯性GP战场机器人等。

二、惯性传感器的分类

惯性传感器分为两大类:一类是角速率陀螺;另一类是线加速度计。

角速率陀螺又分为:机械式干式﹑液浮﹑半液浮﹑气浮角速率陀螺;挠性角速率陀螺;MEMS硅﹑石英角速率陀螺(含半球谐振角速率陀螺等);光纤角速率陀螺;激光角速率陀螺等。

线加速度计又分为:机械式线加速度计;挠性线加速度计;MEMS硅﹑石英线加速度计(含压阻﹑压电线加速度计);石英挠性线加速度计等。

三、惯性传感器的构成

惯性传感器包括加速度计(或加速度传感计)和角速度传感器(陀螺)以及它们的单、双、三轴组合IMU(惯性测量单元),AHRS(包括磁传感器的姿态参考系统)。

MEMS加速度计是利用传感质量的惯性力测量的传感器,通常由标准质量块(传感元件)和检测电路组成。

IMU主要由三个MEMS加速度传感器及三个陀螺和解算电路组成。

四、惯性传感器如何用于传感器融合

现在我们了解了惯性传感器的组成部分,它与传感器融合有什么关系,我们为什么要关心它?好吧,仅传感器并不那么“智能”。他们生成原始数据。但这些原始数据必须经过处理和打包才能成为可操作的。

惯性传感器中的传感器类似于阅读您的患者档案的专科医生——他们都有自己的意见,并且他们的专长为他们提供其他人没有的洞察力,但您可以处理他们的意见以做出最终决定。例如,如果加速度计表明重力正在从指向下方变为更水平的角度,但陀螺仪显示几乎没有运动,你相信哪个?那么,在这种情况下,陀螺仪应该更受信任,因为它不受外力的影响。由于陀螺仪告诉我们用户框架没有改变,可以肯定地说设备一直在加速,就像汽车直线行驶一样。

在另一种情况下,如果陀螺仪显示小而一致的角速度,但加速度计和磁力计显示设备处于静止状态,那么您可以相信两位同意的“医生”的意见。然后你可以推断出有一些陀螺仪偏差会给出错误的输出。这些示例旨在展示传感器融合对于理解基于传感器信息融合的最佳输出是必不可少的。这可用于确定准确的运动、方向和航向信息。

与传感器融合软件结合使用时,惯性传感器不仅可用于更准确的运动、方向和航向,还可用于特殊功能。深思熟虑的惯性传感器数据融合可以通过预测性头部跟踪创建流畅的XR体验,从而最大限度地减少延迟影响。对于无线演示或电视遥控器,传感器融合可以直接将3D控制器运动转换为屏幕上直观的2D运动。加速度计和陀螺仪传感器的组合还可以检测复杂的空中形状和手势。在人类导航中,分析来自加速度计和陀螺仪的数据,传感器融合可以估计某人步行的方向和距离。

传感器融合不必仅通过惯性传感器完成,但通常从惯性传感器开始。在XR空间中,控制器方向与来自外部摄像头的线性位置的融合可以创建一个有效的由内向外的6自由度系统。对于机器人导航,惯性传感器与光流和车轮编码器数据的融合可创建准确且稳健的航位推算。如果涉及运动,传感器融合可能会有所帮助。

以上就是小编这次想要和大家分享的有关惯性传感器的内容,希望大家对本次分享的内容已经具有一定的了解。如果您想要看不同类别的文章,可以在网页顶部选择相应的频道哦。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭