当前位置:首页 > 物联网 > 智能应用
[导读]射频识别技术(RFID,即Radio Frequency Identification)是一种基于雷达技术发展而来的识别技术,其主要原理是通过无线电磁波进行非接触双向数据通信从而获取相关数据并实现目标识别,RFID技术是微波技术、密码学以及无线通信原理等众多学科知识交叉的新兴产物,其应用领域覆盖了高速公路收费管理、铁路物流运输控制管理及工业自动化监控等众多领域。

射频识别技术(RFID,即Radio Frequency Identification)是一种基于雷达技术发展而来的识别技术,其主要原理是通过无线电磁波进行非接触双向数据通信从而获取相关数据并实现目标识别,RFID技术是微波技术、密码学以及无线通信原理等众多学科知识交叉的新兴产物,其应用领域覆盖了高速公路收费管理、铁路物流运输控制管理及工业自动化监控等众多领域。RFID系统按照工作频段可以划分为低频(135kHz以下)、高频 (13.56MHz)、超高频 (860~930MHz)和微波 (2.4GHz以上)等几类。射频识别系统通常由电子标签(射频标签)、天线和阅读器组成。

读卡器一般由射频信号处理模块、基带信号处理模块、控制单元以及和外部设备连接的接口模块等组成,其结构如图1所示。射频信号处理模块主要实现三大功能:一是通过天线发射足够功率的射频电磁波,以激发电子标签并为其提供能量;二是对发射信号进行调制,然后将已调制的信号数据转化为电磁波传送给标签;三是接收并解调来自电子标签的射频信号。为了处理往来于应答器的两个方向上的数据流,射频信号处理模块有两个不同的信号通道,传送到电子标签中去的数据通过发射电路分支,而来自于电子标签的数据通过接收电路分支处理。

控制单元的主要功能:与上层应用软件进行通信,并执行应用软件发来的命令;控制与电子标签的通信过程;信号的编码与解码。对于某些特定系统还有以下的附加功能:执行防碰撞算法;对电子标签与读卡器之间要传送的数据进行加密和解密;进行电子标签和读卡器之间双向的身份验证。

恶劣的读卡器应用环境

RFID的应用环境可能非常恶劣。信道的工作频率是免许可的工业、科技与医药(ISM)频带。此频带中的RFID读卡器受到来自无绳电话、无线耳麦、无线数据网络以及其他临近读卡器的干扰。必须将每一读卡器的RF接收器前端设计为能够抵御强干扰信号,避免产生可导致询问错误的失真。接收器的噪声必须保持在较低的水平,以便具备足够的动态范围,从而以无错方式检测出低电平标签响应信号。

图1中所示的读卡器RF射频收发器,是一个成熟的设计,能够在存在大量干扰源的恶劣环境中稳定地工作。发射器和接收器都带有一个高动态范围直接转换调制器和解调器,因此最大限度地提高了稳定性并降低了成本。

实用和可靠的射频接收器设计

接收器的核心是Linear公司的LT5516,这是一种高度集成化的直接转换正交解调器,芯片上提供了一个精确正交移相器(0度至90度)。来自天线的信号在通过射频滤波器之后,通过一个不平衡变压器直接输入到解调器输入端口。由于LT5516的噪声系数很低,在不需要低噪放大器(LNA)的情况下,仍能保持其21.5dBm IIP3和9.7dB P1dB的性能。

在接收数据时,读卡器发射连续载波(未调制),以便为标签提供电源。在收到请求后,电子标签通过对载波进行调幅,响应一个码流。所采用的调制方式为幅移键控(ASK)或者反相-幅移键控键控(PR-ASK)。解调器带有两个正交移相检出式输出端口,因此具备天然的分集接收功能。如果由于多路或相位取消导致某个通道无法接收信号,另一条通道(移相90度)就可接收较强的信号,反之亦然。这样,整体接收可靠性就得以提高。

一旦解调完成,即可将I(相内)和Q(正交相位)差分输出信号以AC方式耦合至一个运算放大器(被配置为一个差分放大器),随后被转换为单端输出信号。这个时候应将高通角频率设置为5KHz,低于接收数据流的最小信号频率,高于最大多普勒频率(可能被运动标签采用),同时保持高于电力线频率(60Hz)。这样,输出信号就能利用被配置为四阶低通的LT1568顺利穿过低通滤波器。低通角频率应被设置为5MHz,以便最大码流信号穿过滤波器,达到基带。

基带信号然后被一个双路低功耗模数转换器(LTC2291,分辨率为12位)进行数字化处理。由于标签码流的带宽为5KHz至5MHz,LTC2291能够以25MSps的速率进行充分的采样,从而精确地捕获解调信号。在需要的时候,还可在基带DSP中实现额外的数字滤波。这样,接收器就能具备最大的逻辑阈值设置灵活性,该设置可由基带处理器以数字化方式执行。

基带任务和数字化射频信道化处理,可提高用全FPGA解决方案实现的吸引力和集成度。

高动态范围射频发射器设计

发射器集成了一个镜像抑制直接转换式调制器。LT5568具备很高的线性度和较低的背景噪声,因此能够为所发射的信号提供出色的动态范围性能。调制器能够从数模转换器(DAC)接收正交式基带I和Q信号,然后直接调制至900MHz发射频率。

在内部,LO(本地振荡器)被精确正交移相器分割。经调制的射频信号被合并为一个单端、单边带射频输出信号(镜像被抑制了46dBc)。此外,调制器还带有匹配的I和Q混合器,从而最大限度地抑制了LO载波信号(至-43dBm)。

复合调制电路具备出色的邻道功率比(ACPR),有助于满足发射频率屏蔽要求。例如,当调制器射频输出电平为-8dBm时,ACPR指标优于-60dBc。由于具备更出色的ACPR性能,信号可被放大至许可的1w功率(在美国为+30dBm),或者放大至2w,以符合欧盟规范。在上述两种情况下,重要的是保持电平固定,因为该电平用于向电子标签提供电源,并最大化读卡距离。LTC5505型射频功率检测器的内部温度补偿功能,可准确地测定功率,提供稳定的反馈信号,以调节射频功率放大器的输出功率。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

智能制造是一种借助信息化技术和高级制造技术,实现生产过程高度自动化、可灵活配置和高效运作的制造模式。其中,射频识别(RFID)技术是智能制造中被广泛应用的一项关键技术。本文将介绍RFID技术在智能制造中的技术应用和优势。

关键字: 智能制造 射频识别 RFID

无线射频识别即射频识别技术(Radio Frequency Identification,RFID),是自动识别技术的一种,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,...

关键字: 射频识别 射频识别设计方案

射频识别技术(RFID),是20世纪80年代发展起来的一种新兴自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID是一种简单的无线系...

关键字: 射频识别 射频识别应用

在实际应用中,RFID系统的应用要综合考虑位置、距离、温度、湿度、干扰等诸多影响系统性能的因素。未经过测试的RFID系统,系统整体性能不明确,可能会影响实际应用效果,甚至打击最终用户对RFID技术本身的信心。不同的无线信...

关键字: 射频识别 射频识别标签 性能测试

射频识别(RFID)是一种无线通信技术,可以通过无线电讯号识别特定目标并读写相关数据,而无需识别系统与特定目标之间建立机械或者光学接触。具有多目标同时识别、识别距离远、速度快、存储容量大、抗干扰能力强等优点,整个过程无需...

关键字: RFID 射频识别 信息化

说起RFID,很多人都搞不清楚这个到底是什么,专业的介绍是这样的。RFID(射频识别系统)是一种非接触式的自动识别系统,它通过射频无线信号自动识别目标对象,并获取相关数据,由电子标签、读写器和计算机网络构成。

关键字: RFID标签 射频识别 自动识别系统

快餐行业中由于有大量的易腐库存,餐馆需要保持库存的新鲜度以避免浪费。但是,这些检查通常是手动完成的,这非常耗时,并且可能会产生人为错误。对于许多快餐店来说,目前最大的优先事项之一是维护和保护供应链进入餐厅的运营流程,并提...

关键字: RFID技术 射频识别 芯片

长期以来,我国服装企业的生产大多以量制胜,生产过剩的商品满足了供应链管理粗俗阶段的要求。企业生产过多也会产生高库存的困境,目前这种情况早已在中国许多服装企业中脱颖而出。企业的高库存状况也意味着企业的许多资产被占有,不容乐...

关键字: RFID技术 射频识别 监测系统

射频识别(RFID)是 Radio Frequency Identification 的缩写。其原理为阅读器与标签之间进行非接触式的数据通信,达到识别目标的目的。RFID 的应用非常广泛,典型应用有动物晶片、汽车晶片防盗...

关键字: 射频识别 物料管理 门禁管制

摘要:物联网信息网络技术发展非常迅速,他和SCADA系统应用于众多行业和领域。首先介绍了物联网和SCADA系统的基本概念和特征,其次介绍它们的现状和现行应用中的问题,然后归纳它们的共同点,最后总结出它们的未来发展方向,以...

关键字: 物联网 射频识别 RTU SCADA系统 通讯网络
关闭