当前位置:首页 > EDA > 电子设计自动化
[导读]在信息社会的今天,人们对信息的提取、处理、传输以及综合等要求愈加迫切,传感器作为信息提取的功能器件,在国防、科技、工业、农业以及生活各个领域占有重要地位和作用。

在信息社会的今天,人们对信息的提取、处理、传输以及综合等要求愈加迫切,传感器作为信息提取的功能器件,在国防、科技、工业、农业以及生活各个领域占有重要地位和作用, 传感器技术的开发和应用水平已经成为代表一个国家工业发展的标志之一。 汽车传感器作为汽车电子控制系统的信息源, 是汽车电子控制系统的关键部件, 也是汽车电子技术领域研究的核心内容之一。 应用于汽车上的传感器有很多种,目前主要有: 温度传感器、压力传感器、流量传感器位移传感器以及速度、加速度传感器等。

毫米波雷达的工作波段一般为30GHz-300GHz,波长介于微波和厘米波(1mm-10mm)之间,目前成熟商用的车载毫米波雷达包括24GHz(MRR,短中距离雷达)和77GHz(LRR,长距离雷达),后者体积小、功耗低、带宽高、分辨率好、探测距离远。

24GHz MRR探测距离在70米以内,适用于盲点监测(BSD)、变道辅助、、自动紧急刹车(AEB)等场景,2021年12月工信部的 《汽车雷达无线电管理暂行规定》“为推动汽车智能化技术应用和产业发展,将76GHz-79GHz频段规划用于汽车雷达”。从2022年3月1日正式实施起“将不再受理和审批24.25GHz-26.65GHz频段汽车雷达的无线电发射设备型号核准申请”。77GHz LRR探测距离为数百米,主要应用于自适应巡航、自动紧急刹车、前向碰撞预警 (FCW)等场景。

随着自动辅助驾驶往高阶进化,自动驾驶感知系统对感知的准确性和可靠性提出高要求的同时,也对传感器提出了“全天候工作”“探测距离更远” “感知信息维度更多/更精准”的要求。

全球很多车企开始配置5个毫米波雷达,未来可能会配置8个毫米波雷达,很多感知方案使用摄像头和毫米波雷达做数据融合,从传统的后融合、结果融合,到混合式融合、前融合。

随着毫米波雷达成本的降低,还有行车和泊车领域的融合,在泊车领域毫米波起到的作用比传统的超声波传感器更大。主要有以下几个优势:

(1)探测范围更长

通过感应更远距离的物体,可以检测到停车区附近的更多物体。以TI 的 AWR1843AOP 为例,可以检测远至 50 m 的物体。

(2)检测物体更为精确

传统超声波传感器的最近检测距离约为10-15 厘米,AWR1843AOP可以检测距离最近 4 厘米的物体,可帮助泊车系统在狭窄、紧凑的停车位上使用,同时可以检测靠近车辆的路缘石来提高泊车的成功率。图4 显示了毫米波雷达区分几种不同大小和材料(包括木材、金属和塑料)的类型物体的能力,在实验的场景下包括塑料路锥、手推车、木桩和金属桩。

(3)视野覆盖范围更广

相比超声波传感器(通常多达 12 个),毫米波雷达的视野覆盖范围更广,可和视觉一起实现 360 度覆盖能力。AWR1843AOP 的 140 度垂直视野能够检测低处物体,例如路牙子的石头、宠物和停车场里面的各种奇奇怪怪的东西。宽视场和高范围分辨率,可以同时检测和区分多个静态对象。。

无人驾驶汽车是人工智能的一个非常重要的验证平台,近些年成为国内外研究热点.无人驾驶汽车作为一种陆地轮式机器人,既与普通机器人有着很大的相似性,又存在着很大的不同.首先它作为汽车需保证乘员乘坐的舒适性和安全性这就要求对其行驶方向和速度的控制更加严格: 另外,它的体积较大,特别是在复杂拥挤的交通环境下,要想能够顺利行驶,对周围障碍物的动态信息获取就有着很高的要求。

毫米波雷达是一种利用毫米波来探测障碍物距离的设备。按照探测距离来分,毫米波雷达可以分为短程雷达(SRR),中程雷达(MRR)以及远程雷达(LRR)。随着自动驾驶水平的不断提高,毫米波雷达因其成本优势和稳定的工作性能,将被广泛应用于Level 2及以上自动驾驶车辆。它可以全天候工作,是摄像头的必要补充。

毫米波雷达正朝着体积更小、精度更高、探测距离更远的方向发展。由于法规对自动驾驶的安全性要求不断提高,24GHz毫米波雷达将逐渐被77GHz的产品取代,因为更高的频率意味着更高的性能、更宽的带宽和更好的分辨率。

Omdia预计在Level 3及以上的自动驾驶系统中将平均配备5~8个毫米波雷达,以实现盲点检测(BSD)、变道辅助(LCA)和后方碰撞警告(RCA)等功能。

自动驾驶传感器主要包括摄像头、毫米波雷达、激光、超声波、红外线等。车道偏离预警毫米波雷达传输距离长,传输窗口空气衰减和损耗低,渗透性强,能满足车辆24小时适应性的要求。汽车防撞毫米波雷达传感器的特点决定了毫米波雷达传感器设备的小尺寸和重量。它弥补了车载应用中摄像头、激光、超声波、红外等传感器所没有的使用场景。

安装在汽车上的防碰撞毫米波雷达可以测量从雷达到被测物体的距离、角度和相对速度。毫米波雷达可以实现自适应巡航控制,向前报警防撞,盲点检测,辅助停车,辅助变道,独立巡航控制等待高级驾驶辅助系统等功能。更常见的汽车毫米波雷达工作频率接近24GHz和77GH。主要实现24ghz毫米波雷达系统的近距离检测和实现77ghz汽车毫米波雷达的远距离检测。

目前,自动驾驶汽车的设计主要有两种发展模式。首先,主要配备毫米波雷达和其他全硬件设备,其次,自动驾驶汽车主要由视觉算法驱动。主要配备盲区检测毫米波雷达和其他全硬件设备的自动驾驶汽车。由于硬件设备昂贵,难以商业化;自动驾驶汽车主要由视觉算法驱动的自动驾驶汽车在部分交通运输下实现了自动驾驶,但由于缺乏硬件设备,自动驾驶汽车无法实现“看”很难及时反应等情况。

随着自动驾驶汽车技术的不断改进,更多的新技术将应用于自动驾驶汽车,包括四种前方碰撞预警毫米波雷达的出现将自动驾驶汽车的商业化列入议事日程。正如前面提到的,很难判断前面的静态物体是在地面上还是在空中,因为毫米波雷达防碰撞预警系统无法测量高度。当遇到井盖、减速带、立交桥、交通标志等地面时,物体的高度数据无法准确测量。如果这些数据移交给自动加斯,自动驾驶汽车将经常制动。毫米波雷达测距测速系统的出现将弥补这个问题,毫米波雷达预警系统也被称为成像雷达。在原始距离、速度和方向数据的基础上,将第四维集成到传统的毫米波雷达中,更好地理解和绘制环境图,使测量的交通数据更加准确。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭