当前位置:首页 > 智能硬件 > 智能硬件
[导读]CCD图像传感器是一种新型半导体器件一电荷祸合器件,是一种MOS集成电路。它作为一种新型的光电转换型传感器,不但具有体积小、重量轻、功耗小、工作电压低和抗烧毁等优点,而且在分辨率、动态范围、灵敏度、实时传输和自扫描等方面的优越性,也是其他摄像器件无法比拟的。目前,CCD图像传感器不论在文件复印、传真、零件尺寸的自动测量和文字识别、交通监控等民用领域,还是在空间遥感遥测、水下扫描摄像、图像跟踪制导等军事系统中都发挥着重要作用。近年来又向图像识别和在线精密检测方面发展。

CCD图像传感器是一种新型半导体器件一电荷祸合器件,是一种MOS集成电路。它作为一种新型的光电转换型传感器,不但具有体积小、重量轻、功耗小、工作电压低和抗烧毁等优点,而且在分辨率、动态范围、灵敏度、实时传输和自扫描等方面的优越性,也是其他摄像器件无法比拟的。目前,CCD图像传感器不论在文件复印、传真、零件尺寸的自动测量和文字识别、交通监控等民用领域,还是在空间遥感遥测、水下扫描摄像、图像跟踪制导等军事系统中都发挥着重要作用。近年来又向图像识别和在线精密检测方面发展。

一个完整的CCD器件由光敏单元、转移栅、移位寄存器及一些辅助输入、输出电路组成。CCD(电荷祸合器件)是一种MOS集成器件,是美国贝尔实验室的W.S. Boyle和G.E. Smith在1970年3月的电气电子工程师协会(TEEE)国际会议上首次发表的。它的基本功能是电荷的转移和电荷的存储。CCD技术不仅可以制造大容量存储器,还可以使模拟延迟和摄像技术纳入半导体电子轨道。所以,CCD一经问世就引起了世界各国的重视。首先应用在摄像、模拟延迟和大容量存储等三大技术领域。

ccd传感器是数码相机、数码摄像机等器材的核心部件之一,它主要用来将光信号转化为电信号,从而完成数字图像的输入。ccd传感器是由正负偏压交替分布的大量寄生结场效应管构成的,基本原理就是光子击打ccd芯片时,会产生电荷,ccd控制电路通过对其进行放电,并将其电荷值进行积累,从而产生输出电流,经过数码信号放大电路后,就能将其转换为数码信号,成为数字图像。CCD,即ChargeCouledDevice是指电荷耦合元件,其在成像方面具有很好的性能,被广泛应用在了光电成像领域。CCD传感器具有较高的灵敏度、动态范围和较佳的减噪等优点,是比较理想的图像传感器种类之一。此外,ccd还被用于照相机、视频摄像机、生物医学成像、显微镜等领域。

CCD基本单位是MOS电容器,这种电容器可以储存电荷。以P型硅为例,在P型硅衬底上氧化形成表面SiO2层,然后在SiO一层金属上淀积为栅极,P型硅中的大多数载流子是带有正电荷的孔,少数载流子是带有负电荷的电子。当正电压施加在金属电极上时,其电场可以通过SiO绝缘层排斥或吸引这些载流子。因此,带正电源的空穴被排除在远离电极的地方,留下一些带负电源的载流子,这些载流子无法移动SiO二层形成负电荷层(耗尽层),这种现象就形成了电子陷阱,电子一旦进入就无法复出,因此也被称为电子潜在陷阱。

当设备被照亮时(光可以通过每个电极的间隙SiO当光子的能量被半导体吸收并产生电子空穴时,电子被吸引并存储在潜在的陷阱中。这些电子可以传输。光线越强,在潜在陷阱中收集的电子越多,光线越弱,反之亦然。这样,光的强度就变成了电荷的数量,实现了光和电的转换,在潜在陷阱中收集的电子被储存起来,即使停止照明一段时间,也不会丢失,从而实现对照明的记忆。

当光照射到CCD硅片上时,在栅极附近的半导体体内产生电子-空穴对,其多数载流子被栅极电压排开,少数载流子则被收集在势阱中形成信号电荷。当向SiO2表面的电极加正偏压时,P型硅衬底中形成耗尽区(势阱),耗尽区的深度随正偏压升高而加大。其中的少数载流子(电子)被吸收到最高正偏压电极下的区域内,形成电荷包(势阱)电荷转移的控制方法,类似于步进电极的步进控制方式。也有二相、三相等控制方式之分。下面以三相控制方式为例说明控制电荷定向转移的过程。

三相控制是每一排像素上有三个金属电极P1,P2,P3,依次施加三个相位不同的脉冲,使得每排电极下电荷包向一侧移动。 随着控制脉冲的分配,电荷包从一侧转移到最终端,由输出二极管收集后送给放大器处理,实现电荷移动。当各排电荷全部移出感应区即扫描完成一幅画面,这些电荷最终以二进制的形式存储或修改。

以上是从微观方面介绍了CCD图像传感器中核心原件感官电路的原理,在宏观方面按照结构又可分为两类:CCD线列图像传感器和CCD面阵图像传感器,它们在结构方面的差异导致了用途的不同,但原理一样,都是利用了CCD的光电转换和电荷转移的双重功能制成, 线阵CCD:用一排像素扫描过图片,做三次曝光——分别对应于红、绿、蓝 三色滤镜,正如名称所表示的,线性传感器是捕捉一维图像。而CCD面阵图像传感器有呈二维矩阵排列的感光单元——感光区、信号存储区和输出转移部分组成,根据传输和读出的结构方式不同又分为:行传输、帧传输、行间传输等。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭