当前位置:首页 > 测试测量 > 测试测量
[导读]土壤湿度传感器又名:土壤水分传感器、土壤墒情传感器、土壤含水量传感器。主要用来测量土壤容积含水量,做土壤墒情监测及农业灌溉和林业防护。目前常用到的土壤湿度传感器有FDR型和TDR型,即频域型和时域型。

土壤湿度传感器又名:土壤水分传感器、土壤墒情传感器、土壤含水量传感器。主要用来测量土壤容积含水量,做土壤墒情监测及农业灌溉和林业防护。目前常用到的土壤湿度传感器有FDR型和TDR型,即频域型和时域型。目前比较流行的是FDR型FDR(FrequencyDomainReflectometry)频域反射仪是一种用于测量土壤水分的仪器,它利用电磁脉冲原理、根据电磁波在介质中传播频率来测量土壤的表观介电常数(ε),从而得到土壤容积含水量(θv),FDR具有简便安全、快速准确、定点连续、自动化、宽量程、少标定等优点。是一种值得推荐的土壤水分测定仪器。

经过半个多世纪的发展,土壤湿度传感器已经种类繁多、形式多样。湿度的测量具有一定的复杂性,人们熟知的毛发湿度计、干湿球湿度计等已不能满足现代要求的实际需要。因此,人们研制了各种土壤湿度传感器。湿度传感器按照其测量的原理,一般可分为电容型、电阻型、离子敏型、光强型、声表面波型等。

1.电容型土壤湿度传感器

电容型土壤湿度传感器的敏感元件为湿敏电容,主要材料一般为金属氧化物、高分子聚合物。这些材料对水分子有较强的吸附能力,吸附水分的多少随环境湿度的变化而变化。由于水分子有较大的电偶极矩,吸水后材料的电容率发生变化,电容器的电容值也就发生变化。把电容值的变化转变为电信号,就可以对湿度进行监测。湿敏电容一般是用高分子薄膜电容制成的,当环境湿度发生改变时,湿敏电容的介电常数发生变化,使其电容量也发生变化,其电容变化量与相对湿度成正比,利用这一特性即可测量湿度。常用的电容型土壤湿度传感器的感湿介质主要有:多孔硅、聚酞亚胺,此外还有聚砜(PSF)、聚苯乙烯(PS)、PMMA(线性、交联、等离子聚合)。

2.电阻型土壤湿度传感器

电阻型土壤湿度传感器的敏感元件为湿敏电阻,其主要的材料一般为电介质、半导体、多孔陶瓷等。这些材料对水的吸附较强,吸附水分后电阻率/电导率会随湿度的变化而变化,这样湿度的变化可导致湿敏电阻阻值的变化,电阻值的变化就可以转化为需要的电信号。例如,氯化锂的水溶液在基板上形成薄膜,随着空气中水蒸气含量的增减,薄膜吸湿脱湿,溶液中的盐的浓度减小、增大,电阻率随之增大、减小,两级间电阻也就增大、减小。又如多孔陶瓷湿敏电阻,陶瓷本身是由许多小晶颗粒构成的,其中的气孔多与外界相通,通过毛孔可以吸附水分子,引起离子浓度的变化,从而导致两极间的电阻变化。

3.离子型土壤湿度传感器

离子敏场效应晶体管(ISFET)属于半导体生物传感器,是上个世纪七十年代由P.Bergeld发明的。ISFET通过栅极上不同敏感薄膜材料直接与被测溶液中离子缓冲溶液接触,进而可以测出溶液中的离子浓度。

离子敏型土壤湿度传感器结构模型示意图如下图所示。离子敏感器件由。离子选择膜(敏感膜)和转换器两部分组成,敏感膜用以识别离子的种类和浓度,转换器则将敏感膜感知的信息转换为电信号。离子敏场效应管在绝缘栅上制作一层敏感膜,不同的敏感膜所检测的离子种类也不同,从而具有离子选择性。

土壤湿度传感器应用:

一、土壤墒情监测

土壤墒情监测是对土壤中的含水量进行实时监测,以便及时了解土壤水分状况,制定灌溉计划和节水措施,确保农作物正常生长,提高抗旱能力。对于干旱、半干旱地区,要根据气候条件和作物类型、栽培制度、灌溉技术等确定适宜的灌溉制度。在其他地区,应根据当地气候条件和农作物种类来确定合理的灌溉制度。

土壤墒情监测系统可实时监测土壤含水量和墒情指数,同时提供灌溉用水的总量、农作物需水量、灌溉量等参数,并提供灌溉水源优化调度方案,通过历史数据统计分析对水资源进行优化配置和管理,实现节水效益最大化。目前已广泛应用于农田墒情监测、作物需水预测等领域。

二、农作物灌溉管理

土壤湿度传感器可用于田间土壤水分的测量,可以判断作物需水状况和土壤水分状况。为合理灌溉提供依据,同时可以根据作物的需水规律,实现对水资源的有效利用。可以在农作物灌溉管理中广泛应用,在灌溉时,根据农作物需要的不同灌水量,确定不同的灌水时间、灌水方式、灌溉定额等,从而实现节约用水。

三、植物栽培管理

在植物栽培管理方面,可以通过监测土壤湿度来了解植物生长的情况。土壤湿度传感器是用来测量土壤水分的,因此,要想知道土壤中的水分含量,就要用到土壤湿度传感器。通过使用土壤湿度传感器,可以实时监测农作物的生长状况,从而可以及时对农作物进行浇水、施肥等管理工作。当农作物出现缺水症状时,就会通过灌溉系统及时地为作物补充水分。当然,还可以通过监测土壤湿度传感器来确定土壤的水分情况,从而采取相应的措施进行调整。

四、植物病虫害监测

由于植物病虫害的发生和发展与土壤湿度有着密切的关系,因此,可以利用土壤湿度传感器来监测植物病虫害的发生。通过对土壤湿度传感器的安装和使用,可以及时发现植物病虫害,以便及时采取有效措施进行防治。

一般在作物生长季、防治病虫害期间以及收获后对土壤进行监测。

五、温室大棚管理

温室大棚在日常的生产管理中,为了避免温室大棚内温度、湿度等参数过高或过低,就要实时监测这些参数。土壤湿度传感器可对空气湿度、土壤湿度等进行实时监测,从而避免大棚内温度过高或过低,可有效预防和减少蔬菜病害的发生,提高蔬菜的产量和品质,也可提高大棚内作物的产量和品质。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭