当前位置:首页 > 工业控制 > 工业控制
[导读]运算:这里涉及到的是一些数学运算,不过这里的运算对象不是简单的数字,而是电参量,是对电参量进行了加减乘除、积分、微分等计算。

1. 什么是集成运放

全称为:集成运算放大器

我们拆解来看:

集成:将电路封装,留出接口,使其模块化,便于移植。

运算:这里涉及到的是一些数学运算,不过这里的运算对象不是简单的数字,而是电参量,是对电参量进行了加减乘除、积分、微分等计算。

放大器:就是把电参量进行放大,比如把电压从1V放大至5V。

总的来说,就是通过内部元器件的电参量关系将电参量进行运算,达到放大的目的。

2. 集成运放的电压传输特性

集成运放有 同相输入端 UP和 反相输入端 UN,这里的“同相”、“反相”是指运放的输入电压UP、UN与输出电压UO之间的相位关系。

从外部看,可以认为集成运放是一个双端输入、单端输出,具有高差模放大倍数、高输入电阻、低输出电阻、能较好地抑制温度漂移的 差分放大电路 。

集成运放的输出电压UO与输入电压即同相输入端与反相输入端之间的电位差UP-UN之间的关系曲线称为 电压传输特性 ,即:UO=f(UP-UN)。对于正、负两路电源供电即 双电源供电的集成运放的电压传输特性 如图4.1.2(b)所示。从图示曲线可以看出,集成运放有线性放大区域(称为线性区)和饱和区域(称为非线性区)两部分。在线性区,曲线的斜率为电压放大倍数;在非线性区,输出电压只有两种可能的情况,+UOM或-UOM。

由于集成运放放大的是差模信号,且没有通过外电路引入反馈,故称其电压放大倍数为差模开环放大倍数,记作Aod,因而当集成运放工作在线性区时有:uo= Aod(uP- uN),通常Aod非常高,可达几十万倍,因此 集成运放电压传输特性中的线性区非常之窄。

集成运放的三大特性:虚短、虚断、虚地

虚短:UP=UN,两输入端电压相等。

虚断:IP=IN=0,两输入端的输入电流为0。

虚地:UP=UN=0,当信号反向输入时存在(即信号从负输入端流进,而正输入端接地)

3. 比例运算电路

1. 反相比例

虚短:uP=uN

虚断:iN=iP=0

虚地:uN=uP=0

1、差分放大电路

(1)差分放大电路是由典型的工作点稳定电路演变而来的,随着温度的变化,放大电路的静态工作点Q会发生偏移,即零漂,基本的差分放大电路如下图所示:

2)对于共模输入信号:当U11和UI2大小相等,极性相同的时候,由于电路参数对称,T1管和T2管产生的电流变化相等,因此集电极电位的变化也相等,那么此时输出电压为0,说明差分电路对于共模信号具有很大抑制作用,在参数理想的情况下,共模输出为0。

(3)对于差模输入信号:当U11和UI2大小相等,极性相反的时候,由于电路参数对称,T1管和T2管产生的电流变化相等,因此集电极电位的变化也相等,那么此时输出电压为或者的2倍,说明差分电路对于差模信号具有放大作用。

(4)正是由于差分放大电路对共模信号强大的抑制作用,所以差分放大电路通常被用于运算放大器的输入级。

2、镜像电流源

基本镜像电流源电路如下图所示:



3、互补输出级

(1)直接耦合互补输出级

在集成运算放大器中的互补输出级摒弃了输出电容,如下图所示,这种电路称为无输出电容的功率放大电路,简称OCL电路。


在这种电路中,T1和T2的特性是对称的,采用了双电源供电,静态时,两个晶体管均处于截止状态,输出电压可以忽略不计,假定晶体管的基射极电压忽略不计,输入信号为正弦信号,当输入信号在正半轴时,晶体管T1导通,晶体管T2截止,此时正电源供电,电流输出如实线部分所示,电路处于射极输出形式,且输出电压近似等于输入电压;当输入信号在负半轴时,晶体管T2导通,晶体管T1截止,此时负电源供电,电流输出如虚线部分所示,电路也处于射极输出形式,且输出电压与输入电压相等,由此可见,电路中的两个晶体管T1和T2轮流工作,输出与输入之间双向跟随。这两只晶体管的这种交替工作的方式称为“互补”工作方式。

(2)消除交越失真的互补输出级

上述所涉及的直接输出形式的OCL电路虽然可以输出较大的信号,但是由于晶体管本身的基射极电压不为零,所以有可能产生交越失真,为了消除交越失真,应当设置合适的静态工作点,使两个晶体管均处在临界导通或微导通的状态,如下图所示。



值得注意的是,一旦静态工作点失调,例如R2,D1,D2,任意一个元件虚焊,则会导致从+VCC经过R1,T1管的发射结,T2管的发射结,R3到-VCC形成通路,有较大的基极电流IB1和IB2流过,导致T1和T2两个晶体管产生很大的集电极电流,并且T1和T2的压降均为VCC,以至于晶体管由于功耗过大导致损坏。因此,通常在电路中的输出回路中接入熔断器来保护晶体管和负载。

4、运算放大器概述

集成运算放大器最初多用于各种模拟信号的运算(如比例,积分,微分,求和,求差等等),所以又被称为运算放大电路,简称集成运放,集成运放电路由输入级,中间级,输出级和偏置电路四部分组成,如下图所示。


(1)输入级:又称为前置级,一般输入级是一个双端输入的高性能差分放大电路,一般要求其输入电阻高,差模放大倍数大,抑制共模信号的能力强,静态电流小,由于输入级的性能直接影响着集成运算放大器的大多数性能参数,因此,几代产品的更新过程中,输入级的变化最大。

(2)中间级:中间级时整个放大电路的主放大器,其作用是使集成运放具有较强的放大能力,多采用共射极放大电路或者共源级放大电路,并且为了提高电压放大倍数,经常采用复合管作为放大管,以恒流源做集电极负载,其电压放大倍数可达千倍以上。

(3)输出级:输出级应具有输出电压线性范围宽,输出电阻小(即带负载能力强),非线性失真小等特点。集成运放的输出级多采用互补输出电路。

(4)偏置电路:偏置电路用于设置集成运放各级放大电路的静态工作点,采用电流源电路为各级提供合适的集电极(或发射极,漏极)静态工作电流,从而确定了合适的静态工作点。

5、运算放大器的应用

常用的运算放大器的应用电路常见的有比例运算电路,加减运算电路,积分运算电路,微分运算电路,对数运算单路,指数运算电路,通过对数运算电路和指数运算电路又可以设计出模拟乘法器和模拟除法器,除了搭建模拟信号的运算电路,还可以组成有源滤波器,实现对信号频率分量的提取。

运算放大器的应用电路,在之前的电路分析部分中已经给出过一部分运算放大器的举例,这里仅做一些电路的总结,具体推导过程可以参照电路分析部分。常见的运算放大器的应用电路如下表所示。

注意:分析运算放大电路最基本的两个点就是“虚断”和“虚短”两个特性。



声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭