当前位置:首页 > 电源 > 电源
[导读]跨导放大器(operational transconductance amplifier, OTA)是一种将输入差分电压转换为输出电流的放大器,因而它是一种电压控制电流源(VCCS)。跨导放大器通常会有一个额外的电流输入端,用以控制放大器的跨导。

跨导放大器(operational transconductance amplifier, OTA)是一种将输入差分电压转换为输出电流的放大器,因而它是一种电压控制电流源(VCCS)。跨导放大器通常会有一个额外的电流输入端,用以控制放大器的跨导。高阻的差分输入级、可配合负反馈回路进行工作的特性,使得跨导放大器类似于常规运算放大器。跨导放大器的输入信号是电压,输出信号是电流,增益叫跨导,用Gm表示。集成跨导放大器可分为两种:一种是跨导运算放大器,简称OTA,另一种是跨导器,跨导运算放大器是一种通用型标准部件,有市售产品,而且都是双极型的。跨导器不是通用集成部件,没有市售产品,它是在集成系统中进行模拟信号处理的,跨导器几乎都是CMOS型的。

由于跨导放大器的输入信号是电压,输出信号是电流,所以它既不是完全的电压模式电路,也不是完全的电流模式电路,而是一种电压-电流模式混合电路。由于跨导放大器内部只有电压电流变换级和电流传输级,没有电压增益级,因此没有大摆幅电压信号和密勒电容倍增效应,高频性能好,大信号下的转换速率也高,同时电路结构简单,电源电压和功耗都可以降低。这些高性能特点表明,在跨导放大器的电路中,电流模式部分起决定作用。根据这一理由,跨导放大器被看作是一种电流模式电路。

跨导运算放大器的定义

运算放大器可以置于传感器/信号源与模数转换器之间,将两者连接在一起,负责处理来自接收器信号路径的信号;也可置于数模转换器与模拟输出之间,将两者连接在一起,负责驱动发送器信号路径的信号无论是接收还是发送信号,运算放大器主要负责处理模拟信号,以便将模拟信号的重要信息传送至下一环节作进一步处理。换言之,置于输入路径的运算放大器负责为模数转换器提供经过处理的输入信号,而置于输出路径的运算放大器则负责为发送器提供经过数模转换器处理的输出信号。这个处理过程并不简单,因为系统采用的传感器、模数转换器、数模转换器及发送器都各不相同,为它们提供信号的信号源必须在电子特性方面能够满足它们的特殊要求,才可以充分发挥其性能。

什么是跨导放大器(Transconductance Amplifier)

将电压转换为电流的放大器, 另外还有其它几个名称(请参考同义词列表)。其中一个同义词是OTA,或称为运算跨导放大器,从运算放大器和跨导放大器派生而来。

该术语源于“传输电导”,以西门子(S)为单位,1西门子 = 1安培/伏特,通常用符号gm表示。真空管和FET的基础增益用跨导表示。

例如,PH测量仪表的PH电极所发出的信号需要经过高阻抗运算放大器的处理,才可传送至模数转换器,因为一般来说,PH电极的输出阻抗都很高。输入阻抗不足的运算放大器便无法充分利用PH电极的电能,以至模数转换器也无法获得足够的PH电极电能。系统处理模拟信号时如果不得其法,即使所采用的数字处理系统非常先进、强劲,系统的整体性能也会受到严重影响。所谓“接收的是垃圾、输出的也是垃圾(Garbage in, garbage out)”,便是这个意思。

射频接收机质量被认为是影响整个系统成本和性能的主要因素。随着无线通信移动终端朝着小尺寸、低成本、低功耗方向发展,射频前端系统中的集成滤波器" title="滤波器">滤波器设计显得十分重要。其中,基于CMOS工艺的设计方案以其成本和功耗的优势,已成为有源滤波器设计选择的主流方向。

跨导运算放大器(Operational Transconductance Amplifier)因其工作频率高,电路结构简单,具有电控能力,便于集成等特点被广泛用于有源滤波设计中。电压功耗低的COMS跨导运算放大器,同时有热稳定性能好,芯片面积小,便于集成等优点。由OTA及电容C构成的OTA—C滤波器,仅含电容,不含电阻以及其他无源元件,有较低的功耗和较高的应用频率,被普遍应用于高频集成电路领域。

从总体上看,国内的模拟滤波器研究成果较少且工艺陈旧;从带宽上来看,低中频结构接收器中高带宽的应用比较少。本文采用CMOS工艺实现了一个应用于片上全集成接收机中频宽带低通滤波器。

梯形结构电路的元件参数灵敏度低,实现时不用考虑传输函数零极点的配对,设计方便,在宽带滤波器设计中有一定的优越性。跳耦结构电路具有较小的寄生敏感度和较大的动态范围。本文低通滤波器设计采用信号流程图方式实现梯形跳耦结构。

近十几年来,移动电话、掌上电脑、笔记本电脑等便携式设备及医疗、测试仪器的迅猛发展拉动了具有低压差、低功耗的LDO(LowDropout)稳压器的快速发展。当前,LDO稳压器已经实现500mV以下的压差。在LDO稳压器中,电源是主要的噪声源。尤其在高频,电源电压的变化为系统稳定性带来的影响更大。误差放大器是LDO稳压器的重要组成部分,其稳定性与整个LDO稳压器系统的稳定性能密切相关。因此,研究电源电压变化对LDO稳压器中误差放大器的影响是非常必要的。电源抑制比(PSRR)衡量模拟系统对抗电源噪声的能力,是放大器一个非常重要的性能指标。

本文设计的误差放大器为带共源共栅电流镜负载的共源共栅差分运算跨导放大器。它应用在一款超低功耗的LDO线性稳压器中,采用共源共栅差分结构,提高了PSRR,低频达到119dB。同时,该放大器具有高共模抑制比(CMRR),低频达到106dB,静态电流不超过0.62μA。

OTA的设计与仿真

PSRR定义为输入端到输出端的电压增益与电源到输出端的电压增益之比,即

Gm(s)和Gmp(s)分别是输入端到输出端、电源到输出端之间的跨导。在LDO线性稳压器中,只有VDD一个低压电压源供电,因此,这里只讨论VDD的PSRR。

电流镜负载放大器是LDO线性稳压器中误差放大器的基本结构,如图1所示。VDD通过M3、M4,为输出端引入一个电流(go4+sCp4)VDD,通过M3、M1、M2,为输出端引入一个电流(go1+sCp1)VDD,则

式中,go为输出导纳,Cp=CGD+CDB。

图1基本电流镜负载差分电路

对这种结构的放大器的PSRR进行Spice仿真,如图2所示。从图2中可以看出,低频时的PSRR只能达到47.6dB,远远不能达到LDO线性稳压器的性能要求。从(2)式可以看出,减小M1、M4的输出导纳,可以提高低频时的PSRR,减小M1、M4的寄生电容,即减小MOS管的尺寸,可以提高高频时的PSRR。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭