当前位置:首页 > 通信技术 > 通信技术
[导读]光纤激光器指以光纤为基质掺杂某些激活元素作为工作物质,激光器中输入泵浦光源时,能级上的粒子数密度在光纤内高功率密度的作用下发生反转,然后再加上一定的反馈回路装置就可以构成谐振腔,从而输出稳定激光。光纤激光器可以满足多领域方面的应用需求,并且在这些应用中,光纤激光器都占有主导地位。

光纤激光器指以光纤为基质掺杂某些激活元素作为工作物质,激光器中输入泵浦光源时,能级上的粒子数密度在光纤内高功率密度的作用下发生反转,然后再加上一定的反馈回路装置就可以构成谐振腔,从而输出稳定激光。光纤激光器可以满足多领域方面的应用需求,并且在这些应用中,光纤激光器都占有主导地位。

光纤激光器采用的工作介质具有光纤的形式,其特性要受到光纤渡导性质的影响。进入到光纤中的泵浦光一般具有多个模式,而信号光电可能具有多个模式,不同的泵浦模式对不同的信号模式产生不同的影响,使得光纤激光器和放大器的分析比较复杂,在很多情况下难以得到解析解,不得不借助于数值计算。光纤中的掺杂分布对光纤激光器也产生很大的影响,为了使介质具有增益特性,将工作离子(即杂质)掺杂进光纤。一般情况下,工作离子在纤芯中均匀分布.但不同模式的泵浦光在光纤中的分布是非均匀的。因而,为了提高泵浦效率,应该尽量使离子分布和泵浦能量的分布相重合。在对光纤激光器进行分析时,除了基于前面讨论的激光器的一般原理,还要考虑其自身特点,引入不同的模型和采用特殊的分析方法,以达到最好的分析效果。

和传统的固体、气体激光器一样,光纤激光器也是由泵浦源、增益介质、谐振腔三个基本要素组成。泵浦源一般采用高功率半导体激光器,增益介质为稀土掺杂光纤或普通非线性光纤,谐振腔可以由光纤光栅等光学反馈元件构成各种直线型谐振腔,也可以用耦合器构成各种环形谐振腔。泵浦光经适当的光学系统耦合进入增益光纤,增益光纤在吸收泵浦光后形成粒子数反转或非线性增益并产生自发发射。所产生的自发发射光经受激放大和谐振腔的选模作用后,最终形成稳定激光输出。

光纤激光器在工业方面的应用

光纤激光器的结构紧凑、不易受环境影响、维护次数少、光转换效率好以及易和光纤组成的导光系统耦合等优势使其在工业生产方面受到格外关注。目前,传统的激光器在激光切割、激光焊接、激光打标等方面的优势正逐渐被光纤激光器所取代。由于光纤激光器具备高定位精度和光束质量,所以光纤激光打标系统代替了效率不高的二氧化碳激光等激光打标系统,这种取代方式发展迅猛。随着上千瓦或几万瓦的高功率光纤激光器展露头角,光纤激光器也在激光切割和焊接领域迅速发展起来。

光纤激光器在传感上的应用

较之于其他光源,光纤激光器被用作传感光源有很多优势。首先,光纤激光器具有利用率高、可调谐、稳固性好、紧凑小巧、重量轻、维护方便和光束质量好等优秀性能。其次,光纤激光能很好地与光纤耦合,与现有的光纤器件完全兼容,能举行全光纤测试。现在,基于可调谐窄线宽光纤激光器的光纤传感是该领域的应用热门之一。该光纤激光器的光谱线宽很窄,具有超长干系长度,并且可以对频率举行快速调制。把这种窄线宽光纤激光器应用到漫衍式传感体系,可实现超长间隔、超高精度的光纤传感。在美国和欧洲,这种基于可调谐窄线宽光纤激光器的传感技能被遍及应用到。

光纤激光器在通讯上的应用

光纤激光器相比于常规激光系统在结构紧凑性、散热、光束质量、体积以及与现有系统的兼容性等方面具有显著优势,在通讯领域得到广泛的应用。

掺稀土光纤为增益介质的锁模光纤激光器可以产生高重复率、脉宽为皮秒或飞秒量级的超短光脉冲,而且其激射波长又落在光纤通信的最佳窗口1.55 μm波段上,是未来高速光通信系统的理想光源。目前,10GHz 与40 GHz重复频率的锁模光纤激光器已经研制成功。一旦这种通讯网络铺设开展,对这类型激光器的需求将是巨大的。

光纤激光器在医疗上的应用

现在,用于临床的激光器大多是氩离子激光器、二氧化碳激光器和YAG激光器,但通常它们光束质量不高,具有非常大的体积,需要庞大的水冷系统,并且安装和维护非常麻烦,而这些恰恰是光纤激光器可以弥补的。因为水分子在2 μm有一个吸收峰,将2 μm光纤激光器用作外科手术工具可以实现快速止血,减少手术对人体组织的破坏。

超快光纤激光器是目前最活跃的研究领域之一,其在医疗领域也有十分重要的应用。目前,生物医学专家已将它作为超精密外科手术刀,用于视力矫正手术,既能减少组织损伤又不会留下手术后遗症,甚至可对单个细胞动精密手术或者用于基因疗法。人们也在研究如何将飞秒激光用于牙科治疗。另外,利用其超短脉冲,医学研究者们也研究其在医学成像方面的应用。随着各种研究的深入,用于医疗的光纤激光器需求也必将迅速增加。


声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭