当前位置:首页 > 智能硬件 > 智能硬件
[导读]开门见山,大家在使用空间光调制器的时候,都会被衍射图像中心的零级光所困扰,那么零级光是如何产生的,又该如何降低零级光的影响呢?本期文章将重点讲解这两个问题,建议阅读时间5分钟。

开门见山,大家在使用空间光调制器的时候,都会被衍射图像中心的零级光所困扰,那么零级光是如何产生的,又该如何降低零级光的影响呢?本期文章将重点讲解这两个问题,建议阅读时间5分钟。

空间光调制器就像是日常用的屏幕一样,是由一个个结构如图的像素组成的,通过调节上下电极的电压差可以调节每个像素中液晶分子的偏转方向,从而调节液晶区域的折射率,进而调节光入射进这个像素在反射出来的光程差,因而通过给不同像素加载不同的偏转电压,就可以在入射光斑的不同位置引入不同的相位。

但是实际情况下,SLM的像素之间存在有像素间隔,而入射到间隔部分的光是不被调制的,此外在玻璃的上表面也有一少部分光直接发生了反射而没有被调制。

这些不被调制的光在经过傅里叶透镜后,就会汇聚在透镜的后焦点上,从而形成零级光。滨松凭借非常先进的制造工艺,将像素间隔缩小到了0.2 μm之小,像素填充率大于96%,相比于竞品,零级光的比例已经显著降低。

如何消除零级光的影响?

降低零级光的影响可以从硬件与软件两方面着手来操作,并且对于每一种方法操作的难易程度,小编也提前为大家总结了一下。

硬件方面

在硬件方面,因为滨松的相位型调制器只对水平偏振沿着SLM感光面的长边方向的光进行相位调制,而对垂直偏振的光没有调制,因而首先要确保入射的激光是水平偏振的,并且保证偏振的纯净度很高,这可以通过使用半波片+PBS来实现。许多客户在刚使用SLM的时候发现零级光很强,一般都是由于入射光的偏振不对导致的。此外,针对激光器为绿光的情况,由于人眼对于绿光极其的敏感,所以即使很弱的零级光人眼也会觉得很亮。所以此时建议使用相机来判断零级光究竟是强还是弱。

液晶空间光调制器简介

空间光调制器:是一种对光波的空间分布进行调制的器件,在电驱动信号的控制下,改变空间上光分布的振幅或强度、相位、偏振态等。空间光调制器是实时光学信息处理,自适应光学和光计算等现代光学领域的关键器件。

液晶空间光调制器结构

LCOS结构:由光电导层、介质反射镜、液晶层、玻璃基板透明导电电极(ITO)等构成的夹层结构 。再由许多基本的独立单元组成二维阵列液晶面板。

原理:主要是通过液晶分子的双折射性来实现入射光束的相位的调制。通过改变施加在液晶像素分子上的电压,液晶的分子和电场之间会有不同的夹角,即液晶分子的指向矢和入射光的偏振方向形成一定的夹角从而改变了液晶的有效折射率来改变光经过的光程的大小,达到相位调制的目的。

空间光调制器应用

1、光场调控:矢量光束、涡旋光等

涡旋光的生成:HOLOEYE 只需改变加载在空间光调制器上的位相图就可实时生成不同拓扑荷数的涡旋光束,简单方便

光场调控——散射聚焦显微成像:无创聚焦(NiF)显微:

当现代显微技术应用于生物组织等复杂介质时,复杂介质的非均匀折射率强烈干扰光的传播。光在静态介质中的散射的影响可以被“抵消”或逆转。

超快激光加工技术推动了激光制造从传统的宏加工向超精密加工发展。尽管凭借着强大优势,超快激光加工技术成为3C电子等领域中的新宠,但单焦点的超快激光直写加工技术仍然存在加工区域小、效率低的问题,不能同时满足大幅面和高精度加工需求。

空间光调制器的出现使得上述问题在很大程度上得以解决,空间光调制器可以对超快激光光束的振幅、相位或者偏振等光学参数进行调控,配合一定光路设计就可以在材料加工区域得到任意的光场强度分布。下文将对空间光调制器的原理以及其在超快激光2D、3D加工领域中的应用进行详细的介绍。

什么是空间光调制器?

空间光调制器是一种可以在外部信号的控制下改变入射光振幅、偏振以及相位的动态元器件,有着易操控、易集成、低损耗、刷新频率高的特点。在超快激光并行加工应用中,常见的空间光调制器有调整振幅的数字微镜器件(DMD)以及调制相位的液晶空间光调制器(LC-SLM)。

1)DMD

DMD是一种被广泛使用的对入射光的振幅进行调制的空间光调制器,其每个像素都是一个可以独立控制的微反射镜,通过切换每个微反射镜的方向可以单像素控制出射光的角度。DMD 具有切换速度快、易于控制的优点。目前DMD的工作波长范围已经涵盖紫外、可见光以及红外波段。

2)LC-SLM

LC-SLM的每一个像素单元由液晶分子构成。液晶因为其双折射的特性而广泛应用于空间光调制器。如今,已经有大量适用于可见光和近红外波段的液晶空间光调制器。根据液晶种类可分为铁电型和向列型两种,根据使用方式可分为反射式和透射式两种。

全息图的计算方法

全息图是通过空间光调制器加载到入射激光上的相位分布图,通过加载不同的全息图,可以生成多光束阵列、二维面光场强度分布、三维体光场强度分布等,从而满足不同的应用需要,由此探索出了多种全息图计算方法。

1)二维光场全息图生成算法

通过全息图技术可以在焦点处产生所需的二维光场强度分布。此类算法有多种,其中较为经典的是GS (Gerchberg Saxton)算法,后续的很多算法都是由GS算法演变而来。

工业上比较常用的全息图迭代算法算法有:一种是在GS算法的基础上衍生的杨顾算法,另一种是ORA(Optimal Rotation Angle)算法。

此外,使用矢量德拜衍射理论也可以计算得到全息图,实现对不同矢量方向的光场强度分布的调制。另一种能在保证一定全息图质量的同时提高生成效率的非迭代的全息图算法,后来也被广泛应用。

2) 三维光场全息图生成算法

由于三维光场全息图生成算法能够进一步提升效率,加工出更加精细的结构,实现扫描加工无法实现的一次成型结构,因此有着广泛的应用需求。

计算三维光场所需全息图时可以分为两个过程:一个是快速傅里叶变换;另一个是菲涅耳衍射过程。为了改善三维GS算法得到的全息图质量不佳,且计算速度较慢的问题,斯威本科技大学顾敏课题组实现了三维多焦点阵列全息图的计算。

除了GS算法及其变种,一种非凸优化的全息图算法———NOVO-CGH( Non-Convex Optimizationfor Volumetric Computer-Generated Holography)算法也被提出,可用于三维光场的全息图计算。该方法比GS算法得到的结果更好,准确度提高近20%,效率提高近5%。此外,NOVO-CGH算法的一大优势是可以根据实际情况的不同,设计不同的成本函数,以满足不同的应用需求。

3)基于深度学习的全息图生成算法

近年来,基于深度学习技术生成用于空间传播的全息图算法得到了实现,可以很有效地解决全息图生成速度慢的问题。入射光经过空间光调制器的相位调制后传播一定距离之后,可得到目标光场的强度分布,其基本原理如图2所示。目前这种方法得到的全息图只适用于二维的空间传播光场生成,还不能运用于聚焦光场的全息图计算。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

绕组系数、绕组宽度、绕线绝缘厚度、所有绕组的厚度等。此外,漏感还会受到工作频率的影响,随着工作频率的增大,漏感也会增大。

关键字: 变压器 漏感 整流电路

线性电源(Linear power supply)是先将交流电经过变压器降低电压幅值,再经过整流电路整流后,得到脉冲直流电,后经滤波得到带有微小波纹电压的直流电压。要达到高精度的直流电压,必须经过稳压电路进行稳压。

关键字: 线性电源 稳压 波纹电压

MC33035无刷直流电机控制器采用双极性模拟工艺制造,可在任何恶劣的工业环境条件下保证高品质和高稳定性。该控制器内含可用于正确整流时序的转子位置译码器。

关键字: 直流马达 控制电路 滤波器

可编程式直流电源是一种将控制电路、功率变换电路和开关稳压电路集成于一体的新型电源,具有体积小、重量轻、效率高、功能强等特点。

关键字: 可编程电源 直流电源 功率变换

随着科技的飞速发展,电子产品在我们日常生活中扮演着越来越重要的角色。而在这些电子产品中,接口作为连接设备与外部设备的桥梁,其重要性不言而喻。其中,Type-C接口作为一种新型的接口标准,因其独特的优势,逐渐成为了众多电子...

关键字: 电子产品 Type-C 接口

往复泵是一种重要的流体输送设备,广泛应用于化工、石油、制药、冶金等领域。其工作原理基于活塞在泵缸内的往复运动,通过改变泵缸内的容积来实现液体的吸入和排出。本文将详细阐述往复泵的工作原理、结构特点、性能参数以及应用领域,以...

关键字: 往复泵 泵缸 设备

液控单向阀,作为液压系统中的一种关键控制元件,在工程机械、冶金、化工、船舶等多个领域发挥着不可替代的作用。它利用控制液体对主阀芯进行开启和关闭操作,从而实现对液流方向的精确控制。本文将详细阐述液控单向阀的工作原理,包括其...

关键字: 液控单向阀 液压系统 控制元件

场效应管(Field Effect Transistor,简称FET)是一种重要的半导体器件,广泛应用于电子设备的各种电路中。它具有输入电阻高、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点...

关键字: 场效应管 半导体器件 电子设备

电子电路作为现代电子设备的重要组成部分,其稳定性和可靠性对于设备的正常运行至关重要。然而,在实际使用过程中,电子电路难免会出现各种故障,需要进行及时的维修。本文将详细介绍电子电路的维修方法,包括故障诊断、维修步骤、维修技...

关键字: 电子电路 现代电子设备 维修

随着科技的不断发展,颜色传感器在多个领域中的应用越来越广泛。TCS230作为一款高性能的颜色传感器,因其出色的性能和稳定性受到了广泛关注。本文将详细阐述TCS230颜色传感器的工作原理,包括其结构、功能特点以及颜色检测机...

关键字: 颜色传感器 TCS230 光电二极管
关闭