当前位置:首页 > 厂商动态 > 英飞凌
[导读]摘要:在AC-DC SMPS应用中,通常会在输入级使用功率桥式整流器,将交流电压转换为单向的直流电压。在这种拓扑结构中,还会使用大容量电容器作为纹波滤波器,来稳定总线电压,这会导致功率因数性能较差,并将谐波污染反馈到电网。为了改善功率因数和谐波电流,通常需要使用PFC电路。但额外增加一个功率级意味着会降低系统效率和可靠性。在本文中,我们提出了一种基于单电感结构的单级AC-DC拓扑结构,具备PFC和LLC功能。该拓扑结构保留了传统LLC谐振转换器的零电压开关(ZVS)优势,同时实现了高功率因数性能。

摘要:在AC-DC SMPS应用中,通常会在输入级使用功率桥式整流器,将交流电压转换为单向的直流电压。在这种拓扑结构中,还会使用大容量电容器作为纹波滤波器,来稳定总线电压,这会导致功率因数性能较差,并将谐波污染反馈到电网。为了改善功率因数和谐波电流,通常需要使用PFC电路。但额外增加一个功率级意味着会降低系统效率和可靠性。在本文中,我们提出了一种基于单电感结构的单级AC-DC拓扑结构,具备PFC和LLC功能。该拓扑结构保留了传统LLC谐振转换器的零电压开关(ZVS)优势,同时实现了高功率因数性能。

背景

在AC-DC SMPS应用中,桥式整流器被用于将交流输入转换为直流总线电压,并为第二级的隔离DC-DC转换器供电。其中,电流与输入电压的不匹配会给电网带来大量的谐波反馈。因此,电子仪器在接入电网时,需要遵循相关标准规定的功率因数规范和谐波限制。为了解决这些问题,在大多数AC-DC应用中,通常会使用功率因数校正技术。

单级AC-DC拓扑结构

在本文中,我们提出了一种整合了PFC功能的单电感结构LLC谐振拓扑结构,如图1所示。这个拓扑结构由升压电路和半桥LLC电路组成,二者使用同一对开关MOS Q1和Q2。L1是升压电路的主电感。当升压电路的MOSFET Q1和Q2开始交替开关时,L1可以平滑输入电流、减少相位失配、提高PF值,同时实现LLC谐振转换。一次侧的Q1、Q2均可在ZVS模式下工作,二次侧SR MOS可以在ZCS(零电流开关)模式下工作。这可以有效地提高整个系统的效率。

图1 具有高功率因数的单级AC-DC拓扑结构

工作原理与状态分析

在一个完整的开关周期中,我们可以将这个单极AC-DC转换器分为8个工作状态(包括死区时间)。为加深理解,我们将逐个分析这些工作状态。

图2:工作状态1(t0-t1)

状态1(t0-t1):如图2所示,蓝框圈出的部分不参与该工作状态,彩色箭头表示电流的流动方向,其中,红色为PFC,绿色为LLC。在状态1中,Q1和Q2关断,L1处于放电模式,连续的电感电流流经Qd1的体二极管、储能电容C3,然后流经D6和C2回到L1。同时,在LLC谐振回路中,电流从谐振回路的上端流过Qd1和C3,回到谐振回路的另一端。在二次侧,D7 导通,为输出电容器C4充电并为负载供电。由于体二极管Qd1在导通模式下工作,Q1的VDS被限制在体二极管正向电压,在此周期结束时,Q1准备导通, ZVS实现。

图3:工作状态1(t1-t2)

状态2(t1-t2):如图3所示,在这个工作状态中,Q1切换到导通状态,L1继续放电,电感电流流经Q1、C3、D6和C2,然后回到L1。电容器C3仍处于充电模式。在LLC电路中,谐振回路继续放电,直至耗尽,此时电流仍从Lr和Cr流出,来对C3充电(如图3a所示)。充电电流降到0后,耗尽的谐振网络将得到升压电感的短时间充电,电流变成反向(如图3b所示)。在整个工作状态2中,变压器磁感Lm的极性保持在正极接地。在二次侧,D7保持导通,并为输出负载供电。

图4:工作状态3(t2-t3)

工作状态3(t2-t3):如图4所示,L1完全放电,C3变成放电模式,为整个系统供电。电容器C1放电电流流经Q1,为L1充电,并通过D5循环回来。C3的放电电流还经过谐振网络,通过变压器传输电能,一次侧绕组的极性仍然保持为上面为正极,而二次侧绕组电流继续流经D7,为输出负载供电。

图5:工作状态4(t3-t4)

工作状态4(t3-t4):如图5所示,t3期间,谐振电流等于励磁电感Lm中的励磁电流,不再有电流流向变压器的一次侧绕组,电能传输结束,二次侧的二极管D7在ZCS 模式中自然关闭,正半周功率传输完成。输出电容C4开始放电,并保持恒定的输出功率。L1仍由输入电压充电,直至 Q1 关断,充电电流在C1、D5、Q1和L1之间循环(如图 5a 所示)。一旦Q1关断,Q2的Coss开始放电,并参与谐振。在t4期间,Q2的Coss完全放电,VDS降至0,ZVS导通实现。

图6:工作状态5(t4-t5)

工作状态5(t4-t5):如图6所示,Q2的Coss完全放电后,ZVS在t4期间导通。L1开始放电并为系统供电,电感电流流经C1、D5、C3、Q2,然后循环回来。Cr对Lr持续充电,Lm在退磁模式下工作,T1的一次侧绕组的极性变成下正上负,整流器D8变成正向,电能通过D8传输到负载。

图7:工作状态6(t5-t6)

工作状态6(t5-t6):如图7所示,在此期间,L1放电回路与状态5相同,不同之处在于谐振回路电流方向相反,Lr开始对Cr充电,Lm反向磁化。T1的一次侧绕组的极性仍为下正上负,D8保持导通,二次侧电流流过D8,为C4和负载供电。

图8:工作状态7(t6-t7)

工作状态7(t6-t7):如图8所示,此时Q1处于关断状态,Q2处于导通状态。L1存储的电能完全耗尽,电感器开始由输入电压源通过C2充电。充电电流在C2、L1、Q2、D6之间循环流动。D5自然切断。在LLC 谐振回路中,一次侧绕组的极性为下正上负,电能输送到二次侧,同时电流通过 D8 流向负载。

图9:工作状态8(t7-t8)

工作状态8(t7-t8):如图9所示,L1充电回路不变。 在t7期间,谐振电流等于 Lm 磁感应电流,没有电能通过 T1 传输。在 ZCS 模式下,二次侧的D8关闭。输出电容器C4开始放电,并为负载供电。

在上述操作状态的描述中,我们没有单独分析死区时间。实际上,当两个开关都关断时,电感器 L1的电流将通过MOS体二极管继续流动,并对 MOSFET 电容器放电,从而实现ZVS。谐振回路的工作模式与LLC 相同,此处不做过多描述。

整个拓扑工作顺序如图10所示,周期从t0开始,到t8结束,分为8个工作状态。死区时间的工作策略与传统LLC相同,易于理解。在t0之前,Q1的VDS已降至0,因此当Q1在t0导通时, ZVS实现,然后一次侧谐振电流上升,并伴随整个谐振周期。

图10 工作顺序图

仿真与验证

仿真

为了验证单级AC-DC转换器的操作和控制原理,我们使用SIMetrix软件进行了专业仿真。示意图如图11所示。

图11 仿真示意图

该示意图包括桥式整流器D1-D4、滤波电容C1和C2、续流二极管D5和D6、开关MOS Q1和Q2、大容量电容C3、谐振电容Cr、谐振电感Lr以及二次侧整流二极管D7和D8。仿真参数如下表1所示,其中,主要元件的参数为:C1、C2 330nF、L1 50uH、Lr 120uH、Cr 22nF、Lm 380uH,变压器匝数比为8.5:1。仿真结果和波形如下所示。

表1:仿真参数

图12:PFC 输入电流 vs 输入电压

图12提供了交流输入电压与交流输入电流的对比波形。图13显示了放大后的电感器电流和输入电压。该拓扑结构理想地实现了PFC功能。DCM工作策略使得该拓扑结构更适合有PFC功能需求的中小功率AC-DC SMPS应用。

图13:IL和AC 输入的波形(放大后)

图14:Q2 ZVS导通波形

图15:Q1 ZVS导通波形

Q1和Q2的ZVS导通特性如图14和15所示,当MOS的VDS谐振达到0时,栅极导通,ZVS实现,ZVS的行为与 LLC 拓扑结构类似。

演示功能验证

为了验证该工作原理在实际案例中的有效性,我们构建了一个基于300w LLC演示板的高功率因数单级AC-DC转换器。它的规格如下:输入电压180Vac,输出功率12V/25A,谐振电容Cr 66nF,谐振电感Lr 54uH,变压器磁感690uH,匝数比16.5:1。

在演示中,我们测量了交流输入电压和电流,测量结果均与仿真结果相符,实现了预期的PFC功能。谐振回路可以在一次侧实现ZVS导通,在二次侧实现SR二极管ZSC关断。电能传输至二次侧,不会与LLC功能产生任何冲突。此外,谐波电流也得到了很好的匹配。

总结

本文研究了一种具有PFC功能拓扑结构的单级 AC-DC 转换器。与传统的两级拓扑结构相比,即经典的PFC+LLC,这种新拓扑结构将两个电路结合在一起,并在半桥结构中共用一对 MOS,这有利于降低物料清单(BOM)成本和提高功率密度。由于该拓扑只有一个功率电感在DCM模式下工作,因此更适合需要高功率因数的中小型功率SMPS应用,例如:LED照明、快速充电器等。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

在ACDC电源中,输入电压一般是来自电网的85V-265V交流高压,而输出电压则是3.3V、5V、12V等直流低压,因此需要开关电源来实现降压。开关电源有Buck、Boost和Buck-Boost三大经典拓扑,其中Buc...

关键字: 电网 小家电 辅助电源

在日常生活和工业生产中,电压的稳定性对于各种电气设备的正常运行至关重要。然而,有时我们会遇到电压低的情况,这不仅会影响到设备的性能,还可能引发一系列问题。本文将对电压低的原因进行深入探究,并提出相应的应对措施。

关键字: 电压 电网

加拿大温哥华 – 2024年2月28日 – 全球领先的氢气应用离子交换聚合物及薄膜开发商和制造商Ionomr Innovations Inc.实现了众多业内专家认为不可能的目标。Ionomr的Aemion+®碱性膜已达到...

关键字: 电解槽 可再生能源 电网

缓缓转动的巨大白色风机叶片,在明媚阳光下熠熠生辉的太阳能电池板矩阵……,这些让人越来越熟悉的“风光”新能源正在让我们的生活变得更加绿色而美好。在它们不远处的地方,一排排巨大的超级“充电宝”——储能系统则为这些“风”、“光...

关键字: 电联接技术 新能源储能系统 电网

电力通信网络系统是发电厂和相关的变电所等其它各类电力部门为了实现其相互连接目的而建立的一种传输系统,一般而言,电力通信网络系统是由电力部门的交换系统和有关的终端设备组成约。

关键字: 电力通信 电网 网络系统

近年来,企业对电能质量的要求越来越高,而电压波动是影响电能质量的关键问题之一。当配电系统中发生瞬时故障时,电网的无功功率会失去平衡,从而引起电压波动。鉴于此,以2022年用电高峰期间开平市高新工业园区配电系统出现电压 波...

关键字: 电压波动 电能质量 电网

电动机全压起动是一种简单、经济、可靠的起动方法。但是,全压起动时,起动电流可以达到额定电流的4到8倍,当电动机容量大于10kW时,过大的起动电流会对电网产生很大的冲击,所以一般采用降压起动。

关键字: 电机 接线方法 电网

随着电动车数量的增加,确保电网与电动车的互动和协调变得至关重要,以支持电动车的大规模普及。以下是政府和行业可以采取的一些措施:

关键字: 电动车 汽车 电网

9月21日,由中国电机工程学会电力数字孪生应用专委会主办的“2023电力数字孪生技术与应用论坛”在天津举行。优立科技与腾讯集团作为两大协办单位,在现场展示了前沿的电力产业深度元宇宙应用技术,优立科技创始人兼CEO张雪兵做...

关键字: 电力 电网

苏州2023年9月8日 /美通社/ -- 9月7日,协鑫光储充算新产品发布暨战略合作签约仪式在苏州工业园区协鑫未来能源馆隆重举行。鑫辰系列储能专用电芯、鑫河系列液冷储能一体式...

关键字: AI 电芯 充电桩 电网
关闭