当前位置:首页 > 厂商动态 > 泰克科技(Tektronix)
[导读]在今年的泰克创新论坛上,我与新思科技(Synopsys)的Madhumita Sanyal和安立公司(Anritsu)的Hiroshi Goto一起讨论了最新PCIe版本面临的挑战,以及PCIe 7.0可能面临的挑战。

PCIe Express® 物理层先从Gen 4.0飞速发展到了Gen 5.0,最后升级至Gen 6.0,且6.0规范包含了开发硅芯片所需的一切。数据传输速率从16 Gt/s提升到32 GT/s,Gen 6.0更是增加到了64 GT/s(每秒千兆传输速率)。而且,首次采用了PAM4多级信号调制技术,允许我们在单个单位时间内编码两位信息。借此,我们将Gen 5.0的数据传输速率增加了一倍。

在今年的泰克创新论坛上,我有幸参加了一场小组讨论,与我一同参与的还有两位业内专家:新思科技(Synopsys)的Madhumita Sanyal和安立公司(Anritsu)的Hiroshi Goto。我们讨论了最新PCIe版本面临的挑战以及PCIe 7.0可能面临的挑战。PCIe Express 6.0的开发和设计仍在不断演化和成熟中,包括外形标准、测试规范等等。然而,PCI-SIG®已经宣布并已经开始了Gen 7.0的开发,我们预计到2025年将会有一个基本规范。我们有望实现每秒128千兆传输速率和与Gen 6.0一样的PAM4信号调制技术。

正如Madhumita所言:

“现在正处于一个非常有趣的时代,传输速率从64 Gt/s提升到了128 GT/s。这相当于要求具有以下特性的以太网连接:1.6 TB带宽,16个传输速率为128 Gt/s的通道,总传输速率为2 TB/s且是单向,这是以太网世界的要求。并且保留了PAM4,奈奎斯特现在为32 GB,但需要向后兼容所有之前版本。

“我认为它仍会使用Flits,谁知道哪种FEC(前向纠错码)更强大呢?需要FEC就像以太网LAN需要Reed Solomon纠删码一样,也可能仍然使用轻型FEC就可以,也会提升数据传输速率。当然,协议本身可能会进行极大的改进。我认为电气设备将越来越可靠,具体取决于PCI-SIG如何定义通道。我们可能需要新的主板、连接器和电缆。SERDES发送器和接收器架构肯定会面临一些新的挑战。”

Hiroshi Goto补充道:

“内容增加了,通道损耗有多少?从Gen 5.0到Gen 6.0,从32 GT/s到64 GT/s——P和N之间的时钟偏差无论是正还是负,现在都极其关键。一毫米的电缆差异会带来五皮秒的失配。所以,P和N的时钟偏差失配也会产生重要影响。

“人们已经做了大量工作来研究如何保持与卡机电(CEM)连接器的向后兼容性。我认为这是需要密切关注的问题。我们是否能够继续实现向后兼容性?我们是否必须考虑从主机到端点的替代连接类型?”

小组讨论结束后,泰克参加了2023年6月13日至2023年6月14日在美国加州圣克拉拉举行的PCI-SIG开发者大会,会上PCI-SIG宣布了PCI Express(PCIe)7.0规范已升级至0.3版。

在该活动上,新思科技进行了一次所谓的“窥探式”演示,展示了PCIe 7.0即将达到的128 GT/s的数据传输速率。在演示中,新思科技评估板将PRBS模式发送到泰克DPO70000SX示波器上。所有三个128 GT/s PAM4眼图均打开,三者之间具有良好的线性度、低抖动和良好的比率电平失配(RLM)。

PCIe 6之后,敢问路在何方

(成功的128 GT/s PAM4眼图)

在第二场演示中,安利公司重点展示了安利MP1900A误码检测器与泰克DPO70000SX实时示波器以及新思科技PCIe 6.0 PHY & 控制器IP在端到端系统中的兼容表现,清晰显示了FEC应用前后的误码率对比情况。在此演示中,泰克示波器校准的33db应力眼图由充当主机的安利误码检测器发送到具有PHY端控制器的新思科技端到端解决方案。接收器对受压的模式进行均衡,并将信号通过控制器回环至PHY发送器,再由发送器将信号返回至安利误码检测器。包括Gen 6阶段1-3在内的所有代际的链路训练均已完成且通过了测试。

查看2023泰克创新论坛所有技术内容,请移步回放大厅:https://tif2023-china-event.vhall.com/。

关于泰克科技

泰克公司总部位于美国俄勒冈州毕佛顿市,致力提供创新、精确、操作简便的测试、测量和监测解决方案,解决各种问题,释放洞察力,推动创新能力。70多年来,泰克一直走在数字时代前沿。欢迎加入我们的创新之旅,敬请登录:tek.com.cn。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭