当前位置:首页 > 厂商动态 > 意法半导体
[导读]物联网(IoT)和人工智能(AI)正在改变产业和社会,将自动化在日常生活中变为可能,同时解锁在过去难以实现的理念和功能。边缘计算可以在产生数据的地方即时处理数据,而无须在远端的数据中心处理,提供更环保、更智慧的解决方案。

物联网(IoT)和人工智能(AI)正在改变产业和社会,将自动化在日常生活中变为可能,同时解锁在过去难以实现的理念和功能。边缘计算可以在产生数据的地方即时处理数据,而无须在远端的数据中心处理,提供更环保、更智慧的解决方案。

将AI移至边缘

自21世纪初以来,传感器经历了非比寻常的发展。受益于物联网的诞生,可以连线通讯的智慧传感器无所不在。预计到2030年,因5G的广泛部署,物联网装置上数十亿传感器将负责30%的物联网数据流量。这将显著增加AI对于碳的影响。而由于其需要数据中心的运算资源来将数据转化为洞察力和行动力,因此IoT和AI应用程式过去通常都部署在云端。但随着应用程式数量增加,我们需要减低依赖耗电的云端运算。

边缘计算提供了一个解决方案。它涉及将部分储存和运算资源从数据中心移出,使其更靠近数据产生的地方。如此一来,应用程序和装置就能自行收集和分析数据。这种方法为消费性产品、建筑管理、工业预测性维护、自驾车等应用提供了进一步的创新,因此更为蓬勃发展。此外,边缘计算还能降低能源消耗、保护个人资料、减少延迟,并能在使用时做自主决策以及学习。

“边缘AI”可以通过多种方式促进更聪明、更环保的产业发展

边缘计算正以多种方式帮助不同产业变得更为聪明和更环保。例如:

在工厂中的状态监控和预测性维护可以使操作更聪明、更节能。传感器定期更新机器的运作状态,以确定何时需要维修或更换某些零件。这降低了停机时间,确保机器能在最佳状态下运作。

边缘AI对于下一代协作机器人(cobots)也是至关重要的,这些机器人可与人类在同一空间运作以提升效率和确保安全。

智慧城市可以利用数百万个智慧传感器和物联网节点所组成的网络来改善监控、管理资源、协助市民,并利用自驾无人机和车辆改善物流。

让开车变得更安全、更环保和更多连接。安装在下一代汽车上的众多传感器需要本地AI来让车辆可以在潜在危及生命的情况迅速做出反应。此外,边缘AI可以用于优化电池管理系统,并调整车辆状态以适应驾驶者的习惯,确保能以节能的方式驾驶车辆。

将自动化导入农业可以协助提升生产力并降低环境影响。智慧农业的农耕车和机器将使用更少量的水、肥料和农药来促进永续策略。传感器结合边缘AI,可为不同植物分配适量的水或化学物质。

随着医疗和保健向个性化的方向发展,全天候监测和在家中享有医疗服务将是未来趋势。传感器和边缘AI在信息隐私管理亦扮演着关键角色。

上述范例都会产生大量来自传感器的数据,如果这些数据传送到云端处理将会消耗大量能源和占用带宽,同时还会产生数据保护和延迟的相关问题。采用边缘计算与人工智能提供了一种透过永续方式达到这些目标的方法。

加速追踪边缘计算

将AI的数据处理从云端移转至边缘需要部署一系列半导体创新技术,包括超低功耗技术和系统方法,以及在神经处理单元(NPU)和内存内运算(IMC)解决方案中导入特定的硬件加速器。这些支持AI和机器学习的高效运算硬件技术,正在转变边缘数据处理,并推动智能功能和物联网网络的可扩展性。这些技术的结合降低了系统功耗和带宽需求,还能进一步提升针对边缘装置所打造之新一代微控制器的运算效率。

意法半导体(ST)致力于优化运算效率,同时采用低功耗和嵌入式安全技术来保护所收集的数据、数据处理和因此产生的行动。这些发展是为了保有竞争力和获得客户广泛之接受度的必要条件。

ST已经在汽车、智慧工业和物联网等应用领域大力部署边缘AI。STM32系列的32位Arm Cortex微控制器已将适合边缘计算的低功耗版本涵盖其中。为了让不熟悉AI的人更容易上手,NanoEdge AI Studio整合了机器学习函数库,可以为任何指定的应用自动搜索和配置最适合的解决方案。对于熟悉AI模型的人,STM32Cube.AI可协助机器学习工程师快速导入和优化其AI解决方案,并使用进阶功能,如自定义层和深度量化神经网络解决方案。而建立的软件库还可以加载到微控制器上,进而处理推理工作。

ST于2019年推出具有机器学习核心的LSM6DSOX,开始在传感器中应用人工智能。接着推出智能传感器处理单元(ISPU),强化传感器在AI领域的灵活性。

ISPU将信号处理和AI算法结合到传感器上,使产品能够感知、处理和执行后续操作,同时大幅节省空间,功耗最高可降低80%。

能够感知、处理和采取行动的连网微型化物件和系统的数量正在快速成长。ST透过提供传感器、智慧嵌入式致动器、连接性、安全性和嵌入式AI上的创新来推动此一转型。这些解决方案旨在为工业、汽车、健康、农业和其他许多产业提供工具集,使其能够继续创新,同时努力为减碳而做出贡献。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭