当前位置:首页 > 测试测量 > 测试测量
[导读]自举电路是一种电子电路,常见于需要高电压驱动的电路中,如MOS管和功率放大器。自举电路的核心组成部分包括一个电容和一个二极管,工作时,电路通过开关控制电容的充电和放电过程。

自举电路的工作原理主要基于电容两端电压不能突变的特性。12

自举电路是一种电子电路,常见于需要高电压驱动的电路中,如MOS管和功率放大器。自举电路的核心组成部分包括一个电容和一个二极管,工作时,电路通过开关控制电容的充电和放电过程。当开关闭合时,电容充电,电压升高;当开关断开时,电容通过二极管放电,电压降低,但不会低于电源电压。这样,通过周期性地充电和放电,电容上的电压可以维持在一个高于输入电压的水平,从而为上一级电路提供所需的驱动电压。23456

自举电路不仅用于提高电压,还用于稳定电压,尤其是在开关电源和功率放大器等应用中,自举电路能够提高输出电压,使其达到或超过电源电压,从而满足高压驱动的需求

自举电路(Bootstrap Circuit)是一种广泛应用于电子和电力系统中的重要电路,尤其在需要提高输入信号电平以控制高侧开关时扮演关键角色。‘自举’这一术语源于“引导自己上升”的意思,在电路中,它通过储能元件将电压升高至高于输入电压的值。这种电路常见于功率MOSFET或IGBT的驱动电路中。

在所示的自举电路中,只需一个15至18伏的电源便可为逆变器的驱动级提供所需能量。在此配置中,所有的半桥低端IGBT都直接与该电源连接。而半桥高端IGBT的驱动器则通过自举电阻Rboot和自举二极管VF与电源Vb相连。每个驱动器配备一个自举电容Cboot,用于电压缓冲。

当低端开关S2激活,源电压Vs降至电源电压Vcc以下时,电流通过自举二极管和自举电阻Rboot向自举电容Cboot充电,从而在其两端形成悬浮电压Vbs。这个悬浮电压支持高端输出HO相对于Vs的切换。在高端开关S1操作期间,如果Vs达到高电平,自举二极管会反向偏置,使悬浮电压Vbs与电源Vcc隔离。

自举电路的一个典型应用是在电源转换器中,用于提供比输入电压更高的驱动电压,以确保MOSFET等开关器件能够充分导通。这在高效能电源设计中尤为重要,因为即使是微小的传导损失也可能大幅影响整个系统的效率。

在设计自举电路时,对电容和二极管的选型非常重要。自举电容需要具有足够的容量来储存所需的能量,并且其耐压要高于工作电压。自举二极管则需要有足够快的恢复速度,以应对高速开关操作,同时还应具备足够的电流承受能力。

此外,自举电路在某些情况下可能受到电荷泄漏或电容放电的影响,因此在要求持续稳定输出的应用中,可能需要采用额外的电路措施来维持电容的充电状态,如使用低压差稳压器(LDO)来保持电容充电电压的稳定。

我们知道,MOS管是电压驱动型器件。当G极大于S极至少一个Vth时,MOS管才会导通。我们来看下面这个电路:

这里的G极是12V,但由于电阻R7流过电流时存在压降,导致G极被抬高。

一般不是低压MOS的情况下,datasheet的驱动电压用10V或者12V,在上图电路中我们将驱动电压设为G-S= 12-8.42=3.58V,3.5V同样能实现导通,但是导通电阻会很大,导致MOS管发热。

这时候,自举电容电路的用处就来啦。

首先简单解释下自举电容电路

自举,是指通过开关电源MOS管(这里指上管)和电容组成的升压电路,一般通过电源对电容充电,使其电压高于Vin。

最简单的自举电路由一个电容构成,为了防止升高后的电压,会回灌到原始的输入电压,通常会加一个二极管。

它的优势在于利用电容两端电压不能突变的特性来升高电压。

那么在刚刚上述的电路问题中,我们就可以用自举电容的方法来解决。

我们来看下面这个自举电路

-电容的左端为VB,即Vboost,电容的右端为VS浮地;

-C3则为自举电容;

-M为感性负载,电流向右续流。

MOS管Q开通

假设此时的自举电容C3已经充满电,为14V。

当PWM为1时,Q1实现导通,C端的电压为低,接着Q2的B端电压也为低,Q2导通;

这时Q2的E端电压为14V,经过Q2、D2、R4以后MOS管G端大概为12V,Q管(MOS)导通。在这里我们可以得知,自举电源的电压需要比MOS管驱动电压高约2V。

此后Q3的B端电压高于E端,Q3则关断。

Q管导通以后,VM(电机M为感性负载)直接施加在Q管的S端,由于S端与电容的右端相连,自举电容C3右端被抬高,大概在24V。

这时 电容两端的电压无法突变,电容左边的电压同样被抬高,此时14V+24V=38V。

随后,38V电压经过Q2、D2、R4持续给Q管的G端供电。

最后便达到了Q管的S端和G端被同时抬高至24V,且Vgs=12V。

接着我们来说MOS管Q关断的情况:

当PWM变为0时,Q1断开,Q2的BE没有了电流路径,Q2就会断开。这时自举电容的泄Vgs=0,Q管则关闭。

电机M(感性负载)电流向右续流,电流通过Q管的体二极管进行续流,此时C3电容右端电压为-0.7V,无法起到升压作用。二极管D1导通,14V电源通过D1给C3电容充电,充电完成。

接着PWM从0切换为1继续循环步骤。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭