当前位置:首页 > 电源 > 电源
[导读]晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。

什么是晶体管?

晶体管(transistor)是一种固体半导体器件(包括二极管、三极管、场效应管、晶闸管等),它具有检测、整流、放大、开关、稳压和信号调制等多种功能。作为交流断路器,晶体管可以根据输入电压控制输出电流。与普通机械开关(如继电器和开关)不同,晶体管使用电信号来控制其打开和关闭,因此开关速度可以非常快,实验室中的开关速度可以达到100GHz以上。晶体管通常是由半导体材料制成的固态电子器件。电流的循环可以通过添加电子来改变。这一过程使电压变化成比例地影响输出电流的许多变化,从而使放大倍数倍增。除大多数电子设备外,并非所有电子设备都包含一种或多种类型的晶体管。有些晶体管单独或通常放置在集成电路中,并且根据应用的状态而变化。

根据晶体管的性能,可形成晶体管的逻辑电路,在数字集成电路中运用广泛。

同类型逻辑电路(RTL,DTL,TTL)的不同特点:

数字集成电路是对数字集成电路执行逻辑运算和转换的逻辑电路。逻辑电路的基本单元是门电路和触发电路。触发电路主要由各种门电路组成,是数字集成电路的基本单元。依照基本单元电路的工作特点不同,分为三种类型:饱和型逻辑(RTL,DTL,TTL)、抗饱和型逻辑(STTL)、非饱和型逻辑(ECL)。本文主要介绍RTL,DTL,TTL三种逻辑电路。

第一种是电阻晶体管耦合逻辑电路(RTL),它是或非门电路。当输入信号为高电平时,输出为低电平,输出为低电平vol=0.2V,采用步进连接时输出为高电平vol=1V,电路具有速度慢、负载能力低、抗干扰能力差的特点。电路如图1所示:

图1 电阻-晶体管耦合逻辑电路

第二种是二极管-晶体管耦合逻辑电路(DTL),它是一种与非门电路。只要输入信号为低电平,则输出为高电平。只有当所有输入均为高电平时,输出才为低电平。对于RTL电路,其负载能力和抗干扰能力有所提高,但电路速度仍然很慢。

图2 二极管-晶体管逻辑电路

第三种就是我们用到的TTL与非门,如图所示,由于输入级和输出级均由晶体管组成,故称为晶体管-晶体逻辑管,简称TTL电路。其实,TTL门电路也分很多种,比如说非门、与非门、或非门、与或非门以及OC输出的与非门。虽然种类多,但是基本的工作原理都是类似的。所以,接下来就介绍一个经典的TTL与非门电路。

图3 典型TTL与非门

又因为在晶体管中参与导电的有两种极性的载流子,故这种电路属于双极性电路。如图所示:

图4 多射极晶体管的结构及等效电路

中间级:由三极管T2和电阻R2、R3组成。在电路的开通过程中利用T2的放大作用,为输出管T3提供较大的基极电流,加速了输出管的导通。所以,中间级的作用是提高输出管的开通速度,改善电路的性能。

输出级:由三极管T3、T4、T5和电阻R5组成。如图3所示,图3中 T5三极管非门电路,图3中T3、T5是TTL与非门电路中的输出级。从图中可以看出,输出级由三极管T5实现逻辑非的运算。但在输出级电路中用三极管T4、T3和R4组成的有源负载替代了三极管非门电路中的R4,目的是使输出级具有较强的负载能力。其中T4可以起到三极管反向击穿的保护作用。

TTL电平原理:

TTL电平信号被利用得最多是因为通常数据表示采用二进制规定, +5V等价于逻辑“1",0V等价于逻辑“0”,这被称作TTL(Transistor- Transistor Logic晶体管晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。

TTL输出高电平>2.4V,输出低电平<0.4V。 在室温下,一般输出高电平是3.5V ,输出低电平是0.2V。 最小输入高电平和低电平:输入高电平>-2.0V,输入低电平<=0.8V,噪声容限是0.4V。

其他常见的TTL应用是四管单元TTL与非门,STTL和LSTTL电路,LSTTL等。

晶体管是一种与其他电路元件结合使用时可产生电流增益、电压增益和信号功率增益的多结半导体器件。因此,晶体管称为有源器件,而二极管称为无源器件。晶体管的基本工作方式是在其两端施加电压时控制另一端的电流。晶体管两种主要类型:双极型晶体管(BJT)和场效应管(FET)。双极晶体管(Bipolar Junction Transistor-BJT)作为两种主要类型的晶体管之一,又称为半导体三极管、晶体三极管,简称晶体管。它由两个PN结组合而成,有两种载流子参与导电是一种电流控制电流源器件。晶体三极管主要应用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。

晶体三极管的分类

按照晶体三极管扩散区半导体材料不同,可分为NPN型晶体三极管和PNP型晶体三极管,如图1所示。晶体三极管有三个掺杂不同的扩散区和两个PN结,三端分别称为发射极E(Emitter)、基极B(Base)和集电极C(Collector)。发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结。晶体管电路符号中的箭头方向代表PN结的方向(即发射极的电流方向)。

晶体三极管结构图解

(以NPN型晶体管为例)

采用平面工艺制成NPN型硅材料晶体三极管的结构如图2所示。器件的最底层为高掺杂的N型硅片为衬底层,然后生长出低掺杂的N型外延层,经过一次氧化在外延层上生长出SiO2氧化层。一次光刻在SiO2氧化层光刻出硼扩基区,之后进行硼扩散,一般分为两步扩散:预先沉积和再分布扩散。在硼扩散形成晶体三极管的P型基区之后,进行二次光刻和磷扩散形成高掺杂的N型发射区。最后光刻出引线孔,经过金属化(Al)和反刻引出基极和发射极,最后背面合金形成集电极。

晶体三极管位于中间的P区域称为基区,其区域很薄且杂质浓度很低;位于上层的N+区为发射区,掺杂浓度很高;位于下层的N和N+两种掺杂的N区是集电区,面积很大。因此晶体三极管为非对称器件且器件的外特性与三个区域的上述特点紧密相关。

晶体三极管工作原理详解

(以NPN型晶体管为例)

根据晶体三极管的集电结和发射结的偏置情况,NPN型晶体三极管具有4种工作区间,如表1所示。

正向放大区(或简称放大区):当发射结正向偏置,集电结反向偏置时,晶体管工作在放大区。大多数双极性晶体管的设计目标,是为了在正向放大区得到[敏感词]的共射极电流增益。晶体管工作在这一区域时,集电极-发射极电流与基极电流近似成线性关系。由于电流增益的缘故,当基极电流发生微小的扰动时,集电极-发射极电流将产生较为显著变化。

反向放大区:当发射结反向偏置,集电结正向偏置时,晶体管工作在反向放大区。此时发射区和集电区的作用与正向放大区正好相反,但由于集电区的掺杂浓度低于发射区,反向放大区产生的放大效果小于正向放大区。而大多数双极性晶体管的设计目标是尽可能得到[敏感词]正向放大电流增益,因此在实际这种工作模式几乎不被采用。

饱和区:当发射结和集电结均为正向偏置时,晶体管工作在饱和区。此时晶体管发射极到集电极的电流达到[敏感词]值。即使增加基极电流,输出的电流也不会再增加。饱和区可以在逻辑器件中用来表示高电平。

截止区:当发射结和集电结均为反向偏置时,晶体管工作在截止区。在这种工作模式下,输出电流非常小(小功率的硅晶体管小于1微安,锗晶体管小于几十微安),在逻辑器件中可以用来表示低电平。

正向放大区: 内部载流子的运动详解

晶体三极管的放大作用表现为小基极电流可以控制大集电极电流。如下图3所示,从晶体内部载流子的运动与外部电流的关系上来做进一步的分析。

发射结加正向电压,扩散运动形成发射极电流IE

发射结加正向电压且发射区杂质浓度高,所以大量自由电子因扩散运动越过发射结到达基区。与此同时,空穴也从基区向发射区扩散,但由于基区杂质浓度低,所以空穴形成的电流非常小,近似分析时可忽略不计。可见,扩散运动形成了发射极电流IE。

扩散到基区的自由电子与空穴的复合运动形成基极电流IB

由于基区很薄,杂质浓度很低,集电结又加了反向电压,所以扩散到基区的电子中只有极少部分与空穴复合,其余部分均作为基区的非平衡少子到达集电结。又由于电源 VBE的作用,电子与空穴的复合运动将源源不断地进行,形成基极电流IB。

集电结加反向电压,漂移运动形成集电极电流IC

由于集电结加反向电压且其结面积较大,基区的非平衡少子在外电场作用下越过集电结到达集电区,形成漂移电流。与此同时,集电区与基区的平衡少子也参与漂移运动,但它的数量很小,近似分析中可忽略不计。可见,在集电极电源VCB的作用下,漂移运动形成集电极电流IC。

晶体三极管的特性曲线

晶体三极管的输入特性曲线如图4所示。当UCE=0时,相当于集电极与发射极短路,即发射结与集电结并联。因此,输入特性曲线与PN结的伏安特性类似,呈指数关系。当UCE增大时,曲线将右移。对于小功率晶体管,UCE大于1V的一条输入特性曲线可以近似UCE大于1V的所有输入特性曲线。晶体三极管的输出特性曲线如图5所示。对于每一个确定的IB,都有一条曲线,所以输出特性的一族曲线。截止区:发射结电压小于开启电压,且集电结反向偏置。放大区:发射结正向偏置且集电结反向偏置。饱和区:发射结与集电结均处于正向偏置。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭