当前位置:首页 > 消费电子 > 消费电子
[导读]PWM 技术最适合您的电机控制应用?在之前的文章中,我们研究了单象限 PWM 技术,它非常适合成本极其敏感的电机控制应用,在这些应用中,您希望通过改变 PWM 信号的占空比来控制电机的速度。

那么,哪种 PWM 技术最适合您的电机控制应用?在之前的文章中,我们研究了单象限 PWM 技术,它非常适合成本极其敏感的电机控制应用,在这些应用中,您希望通过改变 PWM 信号的占空比来控制电机的速度。但是电机只能在一个方向上旋转,并在同一方向上产生扭矩。我们还介绍了“H 桥”作为研究其他 PWM 拓扑的跳板。在这篇文章中,让我们来看看如何使用 H 桥构建双向速度控制功率级。特别是,我们将构建一个2 象限驱动器因为它可以产生具有正扭矩的正向运动(第 1 象限),或产生具有负扭矩的反向运动(第 3 象限)。我们将再次选择直流电机进行讨论,因为使用直流电机更容易理解这些概念。


如何使用 H 桥配置来创建单极二象限驱动器

对于象限 1 中的单极性 PWM 操作,当我们向 Q4 施加 PWM 信号时,Q1 连续导通。您可以点击此处观看第 1 象限中单极 PWM 操作的动画 。当 Q4 导通时,从 V总线创建电流路径,通过 Q1,通过电机,通过 Q4,并通过地面返回。在此 PWM 状态结束时,Q4 关闭。由于电机绕组有电感,所以会争取保持电机电流同向流动。电感器保护它的电流就像母亲保护她的孩子一样。它实际上是在说,“别弄乱我的电流!如果你这样做,我会产生任何必要的电压来保持我的电流流动。” 结果,电感器迫使 Q3 的背体二极管导通。但由于 Q1 始终导通,电机电流将通过 Q1 而非直流电源返回。当您考虑时,您会意识到由于 Q1 持续开启,该电路的行为与之前讨论的单象限驱动器完全一样,但有一个例外……如果您希望电机沿另一个方向旋转,只需一直打开 Q3 并改为 PWM Q2。这导致电机反向运行并产生负转矩的象限 3 运行。您可以通过单击查看此过程的动画在这里。

有趣的是,在第一象限和第三象限操作中,无论电流在电机中流向哪个方向,母线电流要么为正要么为零!换句话说,这种 PWM 技术不能再生能量。这是因为感应反激电流被“困”在 H 桥的上半部分,永远不会流回直流母线。这可能是优势也可能是劣势,具体取决于您的应用。如果您永远不必担心再生能源,那么您就不必在设计中增加费用来处理它。另一方面,如果你想回收负载能量,那么这种 PWM 技术对你来说不是一个好的选择。

这种技术的另一个优点是它在任何给定时间只需要一个 PWM 信号。这意味着与某些其他 PWM 拓扑相比,您可以从一个处理器控制更多电机。此外,在任何给定时间只有一个晶体管在开关,因此您的开关损耗最小化。最后,每个 PWM 周期只有一个二极管瞬变事件(当 Q3 背体二极管导通后 Q4 再次导通时)。因此,与我们之前讨论的单象限技术相比,该技术不会产生更多的开关噪声。

这种技术的主要缺点是即使你有四个晶体管,你仍然不能在所有四个象限中运行。这就像一辆没有刹车的汽车!如果你想放慢速度,你有两种选择;将脚从油门上抬起并滑行(降低 PWM 占空比),或者突然将汽车倒车(立即从第一象限过渡到第三象限!)顺便说一下,我不建议您尝试这个,或者您可能会在整个高速公路上留下您的变速箱碎片!后一种情况称为 PLUGGING。虽然它会导致电机超快减速,但这通常不是一个好主意,因为由此产生的高电流可能会使您的驱动器部件散落在整个实验室工作台上!

您应该知道,在一种情况下,这种 PWM 技术(甚至是上一篇文章中的单象限电路)可能会导致能量再生回到您的直流电源中。当负载使电机在任一方向加速时,没有任何东西可以阻止它失控,因为这种 PWM 技术无法提供任何制动。电机将继续加速,直到其反电动势电压幅值等于直流电源电压。如果速度超过该点,FET 中的背体二极管将导通,负电流将流入直流母线。我们将在以后的文章中讨论处理此问题的方法。

总之,这种 PWM 技术在需要双向电机速度控制的应用中很受欢迎,但如果电机在您想要减速时自行滑行也没有关系。在下一篇博文中,我们将看到仅通过改变其中一个晶体管上的一个 信号,同时我们就可以使用能量再生来使电机减速。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭