当前位置:首页 > 物联网 > 智能应用
[导读]在讨论SPI 数据传输时,必须明确以下两位的特点及功能:(1) CPOL: 时钟极性控制位。

SPI 是由摩托罗拉(Motorola)公司开发的全双工同步串行总线,是微处理控制单元(MCU)和外围设备之间进行通信的同步串行端口。主要应用在EEPROM、Flash、实时时钟(RTC)、数模转换器(ADC)、网络控制器、MCU、数字信号处理器(DSP)以及数字信号解码器之间。SPI 系统可直接与各个厂家生产的多种标准外围器件直接接口,一般使用4 条线:串行时钟线SCK、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI 和低电平有效的从机选择线SSEL。

在讨论SPI 数据传输时,必须明确以下两位的特点及功能:(1) CPOL: 时钟极性控制位。该位决定了SPI总线空闲时SCK 时钟线的电平状态。CPL=0,当SPI总线空闲时,SCK 时钟线为低电平。CPL=1,当SPI总线空闲时,SCK 时钟线为高电平。(2) CPHA: 时钟相位控制位。该位决定了SPI总线上数据的采样位置。CPHA=0,SPI总线在时钟线的第1个跳变沿处采样数据。CPHA= 1,SPI总线在时钟线的第2个跳变沿处采样数据。

行外设接口 (SPI) 总线是一种运行于全双工模式下的同步串行数据链路。用于在单个主节点和一个或多个从节点之间交换数据。SPI 总线实施简单,仅使用四条数据信号线和控制信号线(请参见图 1)。


一种运行于全双工模式下的同步串行数据SPI总线链路介绍

图 1 基本的 SPI 总线

尽管表 1 中的引脚名称取自 Motorola 公司的 SPI 标准,但特殊集成电路的 SPI 端口名称通常与图 1 中所标示的名称有所不同。


一种运行于全双工模式下的同步串行数据SPI总线链路介绍

表 1 SPI 引脚名称分配

SPI 数据速率通常介于 1 到 70 MHz 之间,字节长度范围从 8 位和 12 位到这些数值的倍数位。

数据传输通常会包含一次数据交换。当主节点向从节点发送数据时,从节点也会向主节点发送数据。为此,主节点的内部移位寄存器和从节点被设置成环形(请参见图 2)。


一种运行于全双工模式下的同步串行数据SPI总线链路介绍

图 2 两个移位寄存器形成一个内部芯片环形缓冲器

在数据交换之前,主节点和从节点使其内部移位寄存器加载存储器数据。产生时钟信号时,主节点会通过 MOSI 线同步输出其移位寄存器。同时,从节点在 SIMO 处从主节点读取第一位,并将其存储到存储器中,然后通过 SOMI 输出 MSB。主节点会在 MISO 处读取从节点的第一位,并将其存储到存储器中以待稍后处理。整个过程将一直持续,直至交换完所有数据位,然后主节点使时钟空闲并通过 /SS 禁用从节点。

除设置时钟频率之外,主节点还会配置相对于数据的时钟极性和时钟相位。这两个选项分别称作 CPOL 和 CPHA,能够允许时钟信号实现 180 度相移且数据延迟半个时钟周期。图 3 显示了相应的时序图。


一种运行于全双工模式下的同步串行数据SPI总线链路介绍

图 3 时钟极性和相位的时序图

CPOL = 0 时,时钟在逻辑 0 处空闲:

如果 CPHA = 0,数据会在 SCK 的上升沿上读取,在下降沿上变化。

如果 CPHA = 1,数据会在 SCK 的下降沿上读取,在上升沿上变化。

CPOL = 1时,时钟在逻辑高电平处空闲:

如果 CPHA = 0,数据会在 SCK的下降沿上读取,在上升沿上变化。

如果 CPHA = 1,数据会在 SCK 的上升沿上读取,在下降沿上变化。


一种运行于全双工模式下的同步串行数据SPI总线链路介绍

图 4 主节点与独立从节点(左)以及菊花链式从节点(右)进行通信

从节点独立寻址时,主节点必须提供多个从选择信号。该结构一般用在数据采集系统中,其中的多个模数转换器 (ADC) 和数模转换器 (DAC) 都必须单独接入。

菊花链式从节点需要主节点提供唯一的从选择信号,因此该结构要求同时启用所有从节点,以确保菊花链内通过所有移位寄存器的数据流不会中断。典型的应用为工业级 I/O 模块中的级联多通道输入串行器和输出驱动器。

目前的项目中使用了SPI总线接口的FLASH存储器存储图像数据。FLASH的SPI总线频率高达66M,但MCU的频率较低,晶振频率 7.3728M,SPI最大频率为主频1/2。对于320*240*16的图像读取时间为333ms,而且还忽略了等待SPI传输完成、写显存、地址坐标设定等时间。实际测试约为1s。成为GUI设计的极大瓶颈。由于TFT驱动是自己FPGA设计的,资源尚有余量,决定把SPI控制器(主)及写图像部分逻辑放入FPGA中用硬件完成。

首先接触到的是SPI的SCK时钟频率问题。FPGA的频率是48M,未使用PLL。能否以此频率作为SCK频率呢?要知道所有的MCU提供的 SPI频率最大为主频的1/2!为什么呢?查过一些资料后发现,SPI从机接收数据并不是以SCK为时钟的,而是以主频为时钟对SCK和MISO进行采样,由采样原理得知SCK不能大于1/2主频,也就有了MCU提供最大master频率是1/2主频,最大slaver频率是1/4主频。FPGA在只作为主机时能否实现同主频一样频率的SCK呢??答案貌似是肯定的!但我还是有点担心,用组合逻辑控制SCK会不会出现较大毛刺影响系统稳定性呢?

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭