当前位置:首页 > 汽车电子 > 汽车电子
[导读]4D毫米波雷达改善了3D毫米波重大缺陷,是智驾感知层技术路线的一支。

4D毫米波雷达是什么?4D毫米波雷达改善了3D毫米波重大缺陷,是智驾感知层技术路线的一支。

实现汽车智能驾驶需要感知层、决策层、执行层三大核心系统的高效配合,其中感知层通过传感器探知周围的环境,目前市场上主流的汽车智能驾驶感知系统包括视觉感知、超声波感知、毫米波感知、激光感知等技术路线。

分支毫米波雷达是通过天线发射调频连续波(FMCW),利用反射回波与发射波的时间差可计算出目标距离。此外,毫米波雷达可也基于多普勒原理,通过发射与反射信号的频率差异可以精确测量目标相对于雷达的运动速度,进一步通过多目标检测与跟踪算法实现多目标分离与跟踪。

目前主流毫米波雷达主要功能为测角、测距与测速,故也称之为3D毫米波雷达。此前特斯拉Auto Pilot就是由3D毫米波提供运算支持,但是3D毫米波雷达固有的缺陷为无法测量物体高度,从而使其不能识别前方静止物体是否会对车辆通行产生影响。

除此之外,3D毫米波雷达另一个缺陷是信噪比太低,存在大量误测。当视觉感知结果与3D毫米波雷达的结果发生冲突的时候,通常会屏蔽掉后者,这或是特斯拉Auto Pilot出现多次事故的原因。2021年5月,特斯拉宣布为北美市场制造的Model 3和Model Y将不配备毫米波雷达,Auto Pilot将由摄像头系统提供运算支持。

4D毫米波雷达相比传统雷达,增加了俯仰角的测量信息,并且角度分辨率可达到亚度(<1°)级别,能够通过输出大量的测量点清晰地呈现出目标障碍物的轮廓。4D成像雷达也能通过神经网络技术,根据呈现的点云图像信息,对道路的使用者和障碍物进行目标检测及分类,可在最远300m处检测、区分、追踪多个静止和移动的目标。此外,4D成像雷达在前前车刹车,防止连续追尾以及大光比、恶劣天气等场景下能够保持较好的性能。

4D 毫米波雷达具有诸多优势:

(1)性能方面:全天候:毫米波的波长比可见光 和红外线更长,可以穿透微小的障碍物,不受天气影响,具有“全天候”的特 点;

具备精确速度信息:毫米波雷达对速度信息感知精准,有效助力算法识别 物体运动轨迹和方向;

相对稠密的点云信息:4D 毫米波雷达可以输出包含速 度、方位角、俯仰角、距离 4 个维度的点云信息,并且点云密度相比传统的毫 米波雷达大幅提升,为算法提供助力。

(2)成本方面:毫米波雷达产业链历经 多年发展相对成熟,芯片走向成熟化,算法端在近年日益完善,4D 毫米波雷达 拥有较好的降本潜力。因此 4D 毫米波雷达有望成为自动驾驶不可或缺的传感 器之一,助力功能落地。


4D毫米波雷达是什么?4D毫米波雷达有那些应用?

智能汽车系列:《4D成像毫米波雷达,自动驾驶最佳辅助》报告来源:幻影视界。

多方案提升分辨率,技术逐渐成熟,大规模上车指日可待

分辨率是衡量 4D 成像毫米波雷达性能的关键指标,行业致力于尽可能高的提 升分辨率以助力整车智能驾驶。提升分辨率有多种路径,可分为软件和硬件两 类方案,硬件方案有:芯片级联、芯片集成、超材料改进天线等,软件方案 有:虚拟孔径成像、超分辨率算法等。目前 4D 成像毫米波雷达仍处于起步阶 段,多种技术路线并存,预计经过对性能与成本的权衡,路线最终将走向收 敛。同时,伴随硬件集成化程度不断提升,产品成本有望持续下降,叠加信号 处理以及融合处理算法逐渐成熟,大规模上车应用指日可待。

产业链包含上游零部件厂商及中游整机厂商,机会良多

4D 成像毫米波雷达上游零部件降本空间较大。4D 成像毫米波雷达上游产品主 要为射频芯片、处理芯片、高频 PCB 以及算法。

(1)射频芯片与处理芯片:毫 米波雷达核心部件,研发壁垒高。目前市场主要以英飞凌、恩智浦、TI 等海外 巨头为主,国内如加特兰等厂商亦逐步实现突破。芯片呈现 SoC 集成化趋势, 产品降本增效,优势玩家地位有望强化。

(2)高频 PCB:价值量较高,新技术 如天线片上集成等方案有望推动降本进而实现产品出货量提升。

(3)算法:分 为信号处理算法和数据处理算法。其中信号处理算法与射频芯片和天线存在一 定耦合性仍有较高技术壁垒,数据处理算法有上移到域控制器的趋势,同时数 据处理算法以及自动驾驶算法目前走向趋同,算法开发成本有望被摊薄。

中游雷达制造厂商竞争激烈,存在上中游垂直一体化。

4D 成像毫米波雷达的中 游厂商可分为具有毫米波雷达生产经验的传统大厂,以及新切入赛道的自动驾 驶方案商与初创厂商,竞争激烈;同时部分公司既是零部件供应商又是雷达制 造商,实现垂直一体化,具有成本和性能优势。目前 4D 成像毫米波雷达行业 整体处于发展初期,技术路线多元,国内外玩家起点接近,国内厂商有望抓住 整车厂验证 4D 成像毫米波雷达的窗口期,迎头赶上,占据一席之地。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭