当前位置:首页 > 电源 > 电源
[导读]多年来,只要看一下电量表,我们就能得到一个直接的答案:我们还能继续开车多久?如今,这个世界充满了电池供电的设备,从笔记本电脑和手机到电动汽车和医疗设备,准确预测剩余运行时间变得至关重要。

多年来,只要看一下电量表,我们就能得到一个直接的答案:我们还能继续开车多久?如今,这个世界充满了电池供电的设备,从笔记本电脑和手机到电动汽车和医疗设备,准确预测剩余运行时间变得至关重要。

与传统的电量计指示器不同,电池计可能不可靠,导致用户感到沮丧,并且需要在不方便的时候寻找充电器。本文深入探讨了电池计量的困难,以及Nova Semiconductor的突破性电池管理系统 (BMS) 技术如何为精确的充电状态 (SOC) 测量提供改变游戏规则的解决方案,从而延长电池寿命并减少生态足迹。

电池计量的复杂性

电量计采用简单的浮动机制,这有助于提高其可靠性。另一方面,电池测量则复杂得多。电池的充电状态 (SOC) 受多种因素影响,例如电池的年龄、温度、充电和放电速率以及电池的化学性质。

与油箱不同,电池的容量和性能会随着时间的推移而下降,这对准确估计充电状态 (SOC) 造成了重大问题。此外,无法直接测量充电状态。电池电压波动很大,而且极易受温度变化的影响,缺乏一致性,无法作为合适的指标。当代解决方案采用电压、电流和其他因素的混合,并采用复杂的算法,尽管它们的精度会随着电池随时间推移而下降。

锂离子电池

锂离子电池(即磷酸铁锂 (LFP) 电池)管理的一个重大挑战是开路电压和充电状态之间的高度统一关系。表面缺乏曲率会导致测量结果出现微小变化,从而对评估电池 SOC 的准确性产生重大影响。传统上,业界一直努力将精度控制在约 5 毫伏,大致相当于 0.1%。实现如此高的精度既困难又昂贵,尤其是在依赖蛮力技术的情况下。

除此之外,还需要在不同温度和电池电压下保持精度,以保证电池的最佳功能,这也增加了难度。蛮力方法通常无法在不同环境下提供恒定的精度,从而导致许多缺点,例如需要用户进行昂贵的校准。缺乏一致性促使人们追求越来越先进和复杂的解决方案,以满足当代电池技术的严格要求。

精确库仑计数的障碍

库仑计数是一种常用方法,用于测量进入和离开电池的电子。但是,它需要电压和温度等其他因素才能真正准确。这些调整是为了提供二阶校正,但不应过分依赖它们,因为随着电池老化,它们会变得无效,导致估算不可靠。

尽管目前有高精度的模拟数字转换器 (ADC),但它们无法实现完美的库仑计数。原因如下:

· 动态范围:系统消耗的电流可能相差很大,从待机微安到工作状态安培。如此巨大的动态范围使得实现精确测量所需的分辨率极具挑战性且成本高昂。

· 电流变化:放电电流波动,会产生干扰采样系统的噪声。即使是充电电流,虽然噪声较小,但也不是完全稳定的。需要高分辨率、高速、连续的转换来捕捉这些变化,但实现这种平衡很复杂,而且耗电。

· 精度和线性:ADC 需要接近零偏移和出色的线性度,才能在高分辨率下实现精确测量。传统 ADC 需要经过大量测试,这会增加测试时间和成本。

Nova 的突破:精确的库仑计数提供准确的 SOC 测量

Nova Semiconductor 的 BMS 技术解决了这些限制,以低成本提供近乎完美的库仑计数。与依赖电池模型和调整的传统方法不同,Nova 的方法直接测量电荷流,无论电池的年龄、温度或电池化学性质如何,都能提供高度准确且可重复的 SOC 读数。

把电池想象成一个水箱。知道水位就无需考虑温度引起的体积波动。同样,通过精确测量电荷流入和流出,Nova 的系统可以准确确定剩余电量。然后可以将自放电和热损失等二次改进因素考虑在内。

超越 SOC:准确的使用情况估计和剩余运行时间预测

借助精确的库仑计数引擎,Nova 的系统可以测量长时间内的使用电量。这样可以实现近乎完美的剩余电量与使用率比率,从而更准确地估计剩余时间或运行范围(图 1)。此外,测量达到特定点(如充满电)所需的电量也变得非常简单。

图 1:Nova 的解决方案提供了 SOC 测量精度和周期可重复性(来源:1)

Nova 的 BMS 提供了许多先进功能,包括高精度电池电压测量、同时测量所有电池和电流,以及灵活实现电池平衡和阻抗测量等各种功能。然而,真正改变游戏规则的是 Nova 的精确库仑计数和 SOC 估算,有望彻底改变电池供电系统。

Nova 的方法采用数字辅助模拟技术,实现了测量电池电压的 1 毫伏的惊人精度和库仑计数重复性的 0.02%。这是以经济高效和复杂的方式实现的。这项创新不仅保证了卓越的性能,而且还使更广泛的商品能够使用智能电池管理技术。

由于缺乏经济高效电池平衡方法,许多廉价消费品都省略了这一关键组件,导致电池寿命大幅缩短。通常,当电池发生故障时,整个物品都无法重复使用,从而导致浪费增加和环境破坏。

Nova 的技术致力于通过提供可靠且经济高效的电池管理解决方案来改变这种情况。Nova 的方法可确保电池组在其指定使用寿命的整个期间内保持最大容量。告别电池过早老化和整机不必要的倾倒。Nova 可确保最佳的电池性能和使用寿命。

拯救地球,一次一个电池组

锂离子电池含有对环境有害的物质。减少电池浪费至关重要。Nova 发现,许多原本“报废”的笔记本电脑电池仍有 70-80% 的容量,可以恢复使用。不方便的电池更换通常会导致设备过早处理,从而对环境造成重大影响。

准确的BMS功能可以显著减少这种浪费。Nova 致力于将其最先进的 BMS 解决方案引入所有可能的设备,确保最佳的电池性能、使用寿命以及对地球的积极影响。


本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭