当前位置:首页 > 模拟 > 模拟技术
[导读]大规模集成电路的飞速发展使得电子产品的体积越来越小,促使了便携式电子产品如雨后春笋一般蓬勃发展,不断添加的新特征和能力,使得电子产品变得越来越复杂。

大规模集成电路的飞速发展使得电子产品的体积越来越小,促使了便携式电子产品如雨后春笋一般蓬勃发展,不断添加的新特征和能力,使得电子产品变得越来越复杂,作为电子设备运作的核心——电源就面临了越来越大的挑战。DC-DC电源管理芯片的高效率,低功耗等特性使得它在便携式电子设备市场中具有不可替代的地位,因此研究并改善DC-DC的性能具有很大的意义。 除了性能要满足供电产品的要求外,电源自身的保护措施也非常重要,过流保护即是防止DC-DC因过载或输出短路造成意外损坏的防护措施之一。而电流检测又是过流保护的重中之重。本文中首先分析了传统电流检测方法的功能及优缺点,在此基础上研究并提出了一种适用于电流控制模式的降压型DC-DC芯片的高性能的电流检测电路,可以及时探知电流大小,可靠地保护芯片。 本文所设计的电流检测电路包括电流采样电路和限流电路两部分,其中,电流采样部分是检测电路可靠工作的关键所在。电流采样是利用了差分放大器两个输入端的虚短特性,将一端与功率元件连接,则另一端输入就等于相应点的电压。采样电路使用了折叠式共源共栅差分电路作为采样放大器。并使用伸缩式串接差分电路构成两级比较器对采样信号进行比较。 利用CMOS工艺设计的电路容易缩减元件尺寸,增加MOSFETs的速度,而且功耗低、制作成本也低,本文的电流检测电路就采用了0.6μm的标准CMOS工艺设计,达到了较好的性能指标。利用Hspice仿真,证明了该电流检测电路的可行性和可靠性。而且此电路也适用于升压型和降—升压型DC-DC芯片的电流检测。

电源作为所有电子产品不可或缺的部分,起着非常重要的作用。如何提高功率密度以及产品功能特性(例如EMC、保护性能等),成为不少半导体厂商需解决的问题。而近些年来,电子产品爆炸,起火等安全问题时有出现,电源安全也需要引起人们的高度重视。电源的保护特性,往往离不开电流电压检测的方式。

本文旨在介绍DC-DC(非特大功率应用)中几种比较常用的电流检测方式及其优点和缺点,当中包括三种DC-DC中比较常用的电流检测方式:

Rsense电阻检测

电感DCR检测

Mosfet Rdson检测

常用电流检测方式介绍

方式一: Rsense电阻检测

采用Rsense电阻检测的优点是合金电阻可以把温度系数降低到1PPM/℃。在高低温(比如-40℃到85℃或者125℃)的变化之下,电流检测出来的结果不会相差太大。

但缺点是合金电阻会带来一部分的损耗,同时对于输出大电流的应用(20A/30A)而言,每一个毫欧都能带来0.4W/0.9W的损耗,因此有时候需要多个合金电阻并联,此时会增加整个电源的面积。

如下图1是LTC7803方案使用Rsense电阻进行电流检测,对于输出电流I来说,则有检测的输出信号等于CF两端的电压Vcf,根据传递公式如下:


基于LTC7803方案的Rsense电阻电流采样

公式中,Rsense+S*ESL是整个检测电阻两端的电压(S=jw),

基于LTC7803方案的Rsense电阻电流采样是整个电压在电容Cf上的阻抗值。当Rf*Cf=ESL/Rsense的时候,带入可以求得Vcf=I*Rsense,这也是为什么很多电源参考设计都会加入一些RC的网络。


基于LTC7803方案的Rsense电阻电流采样

图 1 基于LTC7803方案的Rsense电阻电流采样

方式二: 电感DCR检测

采用DCR检测的优点是可以减小损耗,增加电源的效率。

缺点是电感的DCR温度系数一般是正温度系数,大约3900PPM/℃的变化率(如果是100℃温度的变化,就有39%的电流采样误差)。因此在高低温的环境下,可以直观地发现电源过流保护的保护点相差很大,如果需要抵消温度带来的影响,则需要增加温度补偿电路。

图2是LTC7803采用电感DCR去进行检测,对于输出电流I来说,检测的信号电压等于C1//R2之后两端的电压(也有的DCR采样部分是没有R2这个电阻),根据传递公式可以得Vc1:


基于LTC7803方案的Rsense电阻电流采样

当(R1//R2)*C1=L/DCR时,Vc1=I*DCR*R2/(R1+R2)。


基于LTC7803方案的Rsense电阻电流采样

图 2 基于LTC7803方案的电感DCR电流采样这个传递函数是没有考虑DCR随温度变化的因素,假设温度升高,DCR增大,Vc1增大,但是门限不变,那么对应的过流保护点就会变小。

一些多相的设计会采用温度补偿电路去匹配,譬如比如NTC电路 (可以参考Intersil的ISL6334),但是此时需要注意NTC电阻的放置的位置(需要尽量靠近电感放置),另外选择NTC电阻的B值也要尽量去匹配电路。另外,也可以使用到采用图3,LTM4664 Module等类似的PSM电源方案,内部有2路的温度采样点(对应两路输出),用内部的ADC去采样,由于功能全部集成,可以把温度采样点尽量接近电感。


基于LTC7803方案的Rsense电阻电流采样

图 3 LTM4664内部框图-输入30-58V输出0.5-1.5V/2X25A (详情请参考LTM4664数据手册第26页)

方式三: Mosfet Rdson检测

对于一部分集成Mosfet的DC-DC驱动器而言,由于是内部集成的Mosfet,可以知道其导通的电阻Rdson,则可以采样Rdson上的电压去计算管子上流过的电流。该检测的优点是集成方便,同时可以把方案的体积做小型点。

缺点就是Rdson也是正温度系数,而且Rdson不可能做到完全一致,因此过流保护点也会在一个范围内波动,如图4的LT8610的内部框图和图5的电气特性表。


基于LTC7803方案的Rsense电阻电流采样

图 4 LT8610内部框图/红色圈出部分为芯片内部电流采样的位置

基于LTC7803方案的Rsense电阻电流采样

图 5 LT8610上下管的过流点以及上下管的Rdson总结

本文主要介绍了三种DC-DC中比较常用的电流检测方式:Rsense电阻检测、电感DCR检测和Mosfet Rdson检测。此外,一些大电流的应用会采用霍尔检测电流去提高效率,来实现检测隔离;而一些新兴的产品会采用电流镜的方式去检测电流。 ADI-LT电源数据手册提供了详细的方案以及应用介绍,包括计算公式,实现的拓扑方式,以及布局Layout上的注意事项,是大家学习提升的好帮手。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭