当前位置:首页 > 芯闻号 > 美通社全球TMT
[导读]高雄2024年9月2日 /美通社/ -- 钛升科技(8027.TWO)于2024年8月28日在台湾台北举办了玻璃基板供应商联合交流会,并发起“E-Core System”计划(E&R与Glass Core的组合,并取自"Ecosystem"的谐音),成...

高雄2024年9月2日 /美通社/ -- 钛升科技(8027.TWO)于2024年8月28日在台湾台北举办了玻璃基板供应商联合交流会,并发起“E-Core System”计划(E&R与Glass Core的组合,并取自"Ecosystem"的谐音),成立了“玻璃基板供应商E-core System大联盟”,与十多家台湾优质半导体设备、载板业、自动化、视觉影像、检测及关键零组件公司合作,联手推动玻璃基板中的核心制程——Glass Core。此联盟旨在汇聚各自的专业技术,齐心协力推动完整解决方案,为海内外客户提供适用于下一代先进封装的玻璃基板设备与材料。

钛升科技(8027.TWO)的E-Core联盟包括:

  • 湿蚀刻:Manz亚智科技、辛耘企业
  • AOI光学检测:翔纬光电
  • 镀膜:凌嘉科技、银鸿科技、天虹科技、群翊工业
  • 电镀:Manz亚智科技
  • ABF压合设备:群翊工业
  • 其他关键零件供应商:上银科技、大银微系统、台湾基恩斯、盟立集团、罗升企业、奇鼎科技、Coherent

钛升科技将持续引领台湾玻璃基板技术的发展,不断优化制程,并期望与更多业界伙伴携手合作,共同在玻璃基板领域创造卓越成就。

钛升科技(8027.TWO)于2024年8月28日在台湾台北举办了玻璃基板供应商联合交流会,并发起“E-Core System”计划,成立了“玻璃基板供应商E-core System大联盟”。

钛升科技(8027.TWO)于2024年8月28日在台湾台北举办了玻璃基板供应商联合交流会,并发起“E-Core System”计划,成立了“玻璃基板供应商E-core System大联盟”。

随着AI晶片,高频高速通讯设备和元件需求的快速增长,玻璃基板在先进封装技术中的重要性日益凸显。与当前普遍使用的有机铜箔基板相比,玻璃基板具有更密集的布线能力与更高的讯号性能潜力。此外,玻璃的平坦度极高,并且能承受高温和高电压,这些优势使其成为传统基板的理想替代方案。

玻璃基板制程涵盖玻璃金属化(Glass Metalization)、后续的ABF压合制程,以及最终的玻璃基板切割。在玻璃金属化,Glass Core中一制程涉及TGV(Through-Glass Via)、湿蚀刻(Wet Etching)、AOI光学检测、镀膜(Sputtering)及电镀(Plating)。玻璃基板的尺寸为515×510mm,无论在半导体和载板制程中均属于全新制程。

钛升(8027.TWO)掌握着关键自行研发的技术——Glass Core中的TGV(Through-Glass Via)。

钛升(8027.TWO)掌握着关键自行研发的技术——Glass Core中的TGV(Through-Glass Via)。

玻璃基板技术中的关键在于第一道工序——玻璃雷射改质(TGV)。尽管这项技术早在十年前就已问世,但其速度未能满足量产需求,仅能达到每秒10至50个孔(10~50 via/sec.),使得玻璃基板在市场上并未能崭露头角。钛升科技(8027)自五年前起,与北美IDM客户合作研发玻璃雷射改质TGV技术,并于去年成功通过制程验证,钛升掌握着关键自行研发的技术,已能实现每秒8000个孔(8000 via/sec.,固定图形、矩阵型)或每秒600至1000个孔(600~1000 via/sec.,客制化图形、随机分布类型),且精准度可达+/-5 um,符合3 sigma标准内,使玻璃基板终于能够达到量产规模。

钛升(8027.TWO)掌握着关键自行研发的TGV技术,已能实现每秒8000个孔(8000 via/sec.,矩阵型)或每秒600至1000个孔(600~1000 via/sec.,随机分布类型)。

钛升(8027.TWO)掌握着关键自行研发的TGV技术,已能实现每秒8000个孔(8000 via/sec.,矩阵型)或每秒600至1000个孔(600~1000 via/sec.,随机分布类型)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭