当前位置:首页 > 电源 > 电源
[导读]功率转换器中使用的氮化镓 (GaN) 器件具有多种优势,包括更高的效率、功率密度和高频开关。横向 GaN 高电子迁移率晶体管 (HEMT) 功率器件在此类应用中实现了强劲的市场增长。这种本质上为耗尽模式的器件的栅极驱动具有挑战性,有许多解决方案可以将其转变为稳健的增强模式操作。

功率转换器中使用的氮化镓 (GaN) 器件具有多种优势,包括更高的效率、功率密度和高频开关。横向 GaN 高电子迁移率晶体管 (HEMT) 功率器件在此类应用中实现了强劲的市场增长。这种本质上为耗尽模式的器件的栅极驱动具有挑战性,有许多解决方案可以将其转变为稳健的增强模式操作。

p 栅极 GaN HEMT 面临的一些挑战

在创建增强型 GaN 技术的各种选项中,p 栅极 GaN HEMT 已成为一种流行的器件选择。在栅极金属下添加掺杂镁的 p 型层有助于将带隙以及器件的阈值电压 V th移至正范围。该器件的肖特基金属势垒版本 (SP-HEMT) 已被许多器件制造商和代工厂商业化,电压等级范围从 15 到 650 V。该器件的 V th通常低于 2V。这种低 Vth 会使器件更容易受到噪声的影响,尤其是这些器件能够进行的高频、高压摆率切换产生的瞬变。

器件的寄生开启是漏极-栅极米勒电容耦合的风险。这种风险通常需要使用负关断状态栅极电压 (V GS ) 驱动。另一个限制来自开启时使用更高电压栅极驱动所造成的可靠性问题。栅极触点通常在 V GS > 7 V 时开始导通。陷阱相关效应会产生阈值电压变化,热载流子也会导致动态导通电阻 (RDSon) 增加。这为导通状态 V GS创造了一个上限窗口,通常在 6.5 V 左右。

导通状态 Vgs 的下限窗口可由 RDSon 设置,通常需要 > 4V 左右才能达到饱和低电平。因此,整体操作窗口可能很小(4V – 6.5V)。因此,栅极过驱动的裕度非常有限(大约 1 V)。基于驱动 Si MOSFET 的标准栅极驱动器无法轻松使用,需要多个外部组件,因此会增加转换器电路板的复杂性和成本。电路板设计和布局对于保持电感路径较小至关重要,而使用噪声裕度低且需要许多外部组件与栅极驱动器接口的 GaN 器件会增加这种复杂性。

集成式 GaN 解决方案

Cambridge GaN Devices 是一家无晶圆厂半导体公司,开发了一系列额定电压为 650 V 的硅基 GaN 功率器件。一种称为 ICeGaN™ 的新型栅极接口以及感测和保护电路被单片集成到单个芯片解决方案中。图 1 显示了 ICeGaN™ 电路的原理框图。主功率 HEMT 是肖特基 p 栅极 GaN HEMT,额定电压为 650V,V th约为 1.6V。

辅助低压 GaN HEMT 与电流源和电压限制器一起负责吸收大部分外部施加的栅极电压。因此,功率 HEMT 器件栅极上的电压(称为图 1 中的内栅极或 V Gi)受到严格控制。该电路确保功率 HEMT 不会打开,直到外部栅极电压 V G达到约 2.7 V(这是集成器件 V th),此时 V Gi约为 1.6 V。对于高于此值的电压(当 V G < 7 V 时),V Gi遵循辅助 HEMT 栅极电压 V G,aux,根据公式 V Gi = V G,aux– V GS,aux。当 V G > 7V 时,V G, aux被钳位在恒定电压,因此 V Gi被限制在 5.5 V 左右。

图 1:ICeGaN™ 电路原理框图

图 2 显示了 V G和 V Gi之间的关系。因此,标准栅极驱动器可用于外部 V G 。ICeGaN™ 接口的另一个优点是,相对于高温,钳位电路在低温下高 V G值时会降低 V Gi ,从而最大限度地减少了 GaN HEMT 1中出现的退化机制之一。

米勒箝位是动态操作下的重要保护装置。该装置具有可调状态,因此当功率 GaN 开启时,它在正常条件下处于高阻抗关闭状态。在关闭时,它能够将 V Gi强力拉至 0 V,加速关闭并最大限度地减少栅极电荷。米勒箝位还可在外部瞬变和快速开关事件期间提供强大的抗寄生开启能力。

图 2:ICeGaN™ 电路中V G和 V Gi之间的关系

栅极过压稳定性

在王教授及其团队进行的这项研究中,他们研究了 ICeGaN™ 的动态栅极过压边界。他们使用了 650V/130 mΩ ICeGaN™ 产品。智能接口由外部 12 – 20 VV DD电压供电,如图 1 所示。在 V G或 V Gi处会产生谐振电压过冲,这模仿了电源转换器中可以看到的栅极过冲。测试在静态条件下进行,其中功率 GaN 漏极-源极接地(称为 DSG,V DS = 0V),模仿零电压开关情况,以及在 400 V 总线电压和电感负载下的硬开关 (HSW) 条件。测试平台原理图如图 3 所示。

图 3:用于栅极过压稳定性的测试平台及总结结果

该测试电路通过在栅极环路电感器 L G中积累能量来产生过冲,该电感器由 0.5 VV CC电源电压充电。开关 S1 是低压 GaN HEMT。当 S1 关闭时,L G中的能量会产生谐振过冲,谐振由 L G以及 ICeGaN™ 的输入电容与 S1 的输出电容之和产生。过冲的脉冲宽度可以通过 L G值进行调制,过冲可以通过 S1 的导通时间进行调制。这项工作中使用的宽度为 20 ns。这些设备在 25 o C 和 150 o C 下进行了测试。使用的另一个变量是 V DDICeGaN™ 芯片的电源。在一种情况下,该电压设置为 20 V,而在另一种情况下,该电压与外部栅极电源相连。后一种情况可消除 ESD 保护电路中的过压应力。

动态栅极过压稳定性通过参数 BV G, DYN来衡量,该参数表示部件发生故障前的最大栅极过应力电压。所得结果如图 3 中的表格所示。当过压直接施加到内部栅极时,可获得 33-35 V 的 BV G, DYN值,而当应力施加到 ICeGaN™ 的外部栅极引脚且 V DD为 20 V时,该值会增加到 66-72 V。当 V DD引脚短路到外部栅极时,BV G, DYN进一步增加到 84 -92 V。在 VDD 由外部 20 V 电源驱动的情况下进行的故障分析表明,ICeGaN™ 芯片中的 ESD 保护模块可能是故障模块。故障时的参数特性显示栅极-源极短路。在 VDD 短路至外部栅极的情况下发生的故障显示故障后传输特性的变化很小。此处的故障归因于米勒钳位的退化,导致软故障。

BV G, DYN中显示的显著提升表明 ICeGaN™ 栅极接口提供了出色的栅极保护。通过集成解决方案提高栅极稳健性对于在电源转换器应用中使用 ICeGaN™ 器件而言是一项重要优势。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭