当前位置:首页 > EDA > 电子设计自动化
[导读]直流变直流电路(DC-DC Converter),也叫斩波电路(DC Chopper)。 能将一种直流电源变换成另一种具有不同输出特性的直流电源的电路,是开关电源的核心。

1前言

直流变直流电路(DC-DC Converter),也叫斩波电路(DC Chopper)。 能将一种直流电源变换成另一种具有不同输出特性的直流电源的电路,是开关电源的核心。 跟交交变换一样,直流变直流也分为直接直流变流电路和间接直流变流电路。 我们一般按照电路拓扑的不同,将其分为不带隔离变压器的和带隔离变压器的DC-DC变换器。 分类如下:

不带隔离变压器的:降压(Buck)变换器、升压(Boost)变换器、升降压(Buck-Boost)变换器和丘克(Cuk)变换器等。

带隔离变压器的:反激式(Flyback)变换器、正激式(Forward)变换器、推挽式(Push-Pull)变换器和桥式(Bridge)等。

其中,Buck电路和Boost电路是DC-DC变换器最基本的两种拓扑形式。 DC-DC变换器的主要功能是变换直流电压等级,隔离变压器则根据实际情况进行选取,其基本作用是输入输出之间的隔离,也可以进行变压用。 无论哪一种DC-DC变换器,主回路使用的元器件都是功率半导体、电感、电容。 目前使用的开关器件主要有MOSFET、IGBT以及二极管等。 电感和电容则是存储和传递电能的元件。

DC-DC变换器的基本手段是通过控制开关器件的通断,使带有滤波器的负载和直流电源一会儿接通,一会儿断开,从而在负载上得到另一个等级的电压。

其具有功耗小、效率高、体积小、重量轻、电路形式多样等优点,在信息、航天、家电、军事、交通等各个领域得到普遍应用。 可以说DC-DC变换器无处不在了。

接下来,我们就一起慢慢地聊一聊DC-DC的那些事儿~

2降压(Buck)

降压电路,顾名思义,就是将一个原本比较高的电压转换成电压较低的电路,即输出电压小于等于输入电压的单管非隔离直流变换电路。

基本电路拓扑如下:


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

Buck电路的主电路是由开关管T、二极管D、输出滤波电感L和输出滤波电容C构成的,电源是电压源性质,负载则为电流源性质。

为了便于我们分析,这里我们设定了几个前提:

①开关管、二极管均认为是理想器件,即在导通时没有导通压降,截止时没有漏电流(当然,实际情况中,有必要考虑这些因素的);

②电感、电容也认为是理想器件。电感工作在线性区并且未饱和,寄生电阻为零,电容的等效串联电阻(ESR)也为零;

③输出电压中的纹波电压和输出电压的比值很小,可以忽略。

首先,我们定义一个比较重要的参数,占空比。即开关管导通时间ton和开关周期Ts的比值,用Dc表示。

Dc=ton/Ts

根据电感电流是否连续,Buck变换器有三种工作模式——连续导电模式(CCM)、不连续导电模式(DCM)和临界状态(BCM)。电感电流连续是指输出滤波电感L的电流总大于零,电感电流断续是指在开关管关断期间有一段时间流过电感的电流为零。在这两种工作模式之间便是电感电流临界连续状态,即在开关管关断期末,滤波电感的电流刚好降为零。

Buck变换器连续导电模式

(1)


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

当开关管T导通时,续流二极管反向偏置截止,电容开始重电,直流电压源Us通过电感L向负载传递能量。此时,电感电流iL线性增长,存储的磁场能量也逐步增加。负载R流过电流Io,两端输出电压Uo上正下负。在一个开关周期Ts内开关管T导通的时间为ton。

(2)


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

当开关管T关断时,由于电感电流iL不能突变,所以iL通过二极管D续流,电感电流随之逐渐减小,电感上的能量逐步消耗在负载上,iL降低,L上储存的能量减小。电感电流减小时,电感两端的电压UL改变极性,二极管D承受正向偏压而导通,构成了续流回路,负载R两端的电压仍保持上正下负。当iL

在稳态分析中,假定输出端滤波电容很大,我们可以认为输出电压是平直的。同样,由于稳态时,电容的平均电流为零,是因为Buck变换器中电感平均电流等于平均输出电流Io。在连续导电模式下,电感电流不会减小到0,前一个周期结束时刻和下一个周期开始时刻电流是连续的。

工作波形如下图所示


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

稳态工作的情况下,我们可以得出输入与输出的关系。开关管T导通时,电源电压通过T加到二极管D两端,二极管反向截止。电流流过电感,稳态时输入输出电压保持不变,则电感两端电压极性为左正右负,忽略管压降,则有uL=Us-Uo。由于储能电感的时间常数远大于开关周期Ts,所以在该电压作用下输出滤波电感中的电流iL可以近似认为是线性增长,知道t1时刻,iL达到最大值ILmax。电感电流线性上升的增量为:


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

当开关管T关断时,电感两端的电压极性为左负右正,二极管导通续流,忽略管压降则有uL=Uo,同样认为电感中电流iL可近似认为是线性下降,下降的量的绝对值为:


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

当电路工作在稳态时,电感电流iL波形必然是周期性重复,那么就有,开关管T导通期间电感中的电流增量等于其截止时电感中电流的减少量,即


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

综合上述式子可得

Uo=DcUs

由上式可知,改变输出电压的办法可以调整输入电压Us,也可以改变占空比Dc。在输入电压一定的情况下,改变占空比则可以控制输出平均电压。输出平均电压Uo总是小于输入电压Us。连续导电模式下Buck变换器的电压增益M为

M=Uo/Us=Dc

Buck变换器连续导电模式

当电感较小,负载电阻较小,则负载电路的时间常数较小,或当开关周期Ts较大时,将出现电感电流已下降到0,但新的周期却尚未开始的情况;在新周期里,电感电流从0开始线性增长,工作状态如下所示:


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

此时一个周期Ts内有3种状态,分为Dc1Ts、Dc2Ts、Dc3Ts。


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

开关管T导通时,Dc1Ts时间从0到t1,电感电流增加量为


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

开关管T关断时,Dc2Ts时间电感电流减小量为


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

根据电感电流增加量等于减小量,可得


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

整理可得


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

不连续导电模式下,Buck变换器的电压增益M为


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

其中,τ=L/(RTs)


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

电感电流连续的临界条件

如果在Ts时刻,电感电流iL刚好下降到0,则称之为电感电流连续的临界工作状态,如下图所示


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

此时负载电流Io和iL之间的关系为

◬iL=2Io

其中,Io=Uo/R

则临界条件下,电感L为


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

纹波电压◬Uo和电容的计算

流经电容的电流ic=iL-Io对电容充电产生的电压◬Uo称为纹波电压,纹波电压的可以由下式计算


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

那么,我们可以根据纹波电压的要求和其他参数,求得电容的大小


DC-DC变换器最基本拓扑 :Buck电路和Boost电路

从上面分析可知,电感值和电路中的很多参数有关系,如占空比、负载、开关频率,电容值则跟输出电压、纹波电压、电感值、开关频率、占空比有关系。 开关频率也高,电感和电容的值就越小。

以上便是今天的谈资,直流变换电路中的降压(Buck)电路,主要介绍了三种模式(CCM/DCM/BCM)下的工作原理以及相关计算(当然,分析的前提是相关器件理想化,实际设计中要考虑到器件导通压降等相关参数)。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

-三款新器件助力提升工业设备的效率和功率密度-

关键字: SiC MOSFET 开关电源

在现代科技飞速发展的时代,电子产品已广泛渗透到人们生活和工业生产的各个角落。从日常使用的手机、电脑,到工业生产中的各类精密设备,都离不开稳定可靠的电源供应。而开关电源系统作为电子产品的核心供电部件,其性能与稳定性至关重要...

关键字: 开关电源 雷电 浪涌

开关电源凭借其体积小、重量轻、效率高的显著优势,在现代电子设备中广泛应用。然而,由于其工作在高频开关状态,不可避免地会产生电磁干扰(EMI)。这种干扰不仅会影响自身性能,还可能对周围其他电子设备的正常运行造成严重干扰。因...

关键字: 开关电源 电磁干扰 高频

PCB设计在EMI抑制中起着关键作用。合理的布局布线能够有效减少信号的电磁辐射和相互干扰。首先,应将功率电路和控制电路进行物理隔离,避免功率电路中的大电流、高电压信号对控制电路造成干扰。功率器件和电感等高频器件应尽量靠近...

关键字: LED 开关电源

开关电源,这一利用现代电力技术调控开关晶体管通断时间比率的电源设备,其核心在于维持稳定输出电压。这种电源通常由脉冲宽度调制(PWM)控制的金氧半场效晶体管构成,是现代电力电子技术的重要一环。

关键字: 开关电源 电源

同步整流和非同步整流是开关电源中两种不同的整流方式,它们的主要区别在于续流回路中使用的元器件及其控制方式。

关键字: 电流 开关电源

在现代电子设备的庞大体系中,开关电源宛如一颗璀璨的明珠,凭借其高效、紧凑、灵活等诸多卓越特性,广泛应用于从日常电子消费品到复杂工业设备的各个领域。从我们爱不释手的智能手机、平板电脑,到功能强大的服务器、精密复杂的医疗设备...

关键字: 开关电源 电子设备 供电

反激式开关电源以其电路结构简单、易于实现等优势,在众多电子设备中得到广泛应用。在反激式开关电源的诸多参数中,输出整流器占空比是一个关键变量,它对电源的损耗有着重要影响。深入研究二者关系,对提升反激式开关电源的性能与效率意...

关键字: 反激式 开关电源 输出整流器

在开关电源实际布线时,首先要根据实际应用,仔细分清楚各种地线的种类,然后依据不同地线的特点和电路的需求选择合适的接地方式。不论采用何种接地方式,都必须始终遵守 “低阻抗,低噪声” 的原则,以确保接地的有效性,减少电磁干扰...

关键字: 布线 开关电源 电磁干扰

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自...

关键字: 开关电源 电源
关闭