当前位置:首页 > > 光电显示电路
[导读]它的优势在于重量轻和效率高,可以控制均衡电量的加载,就是控制均衡电压的供给,通过高速动作的开关量的开和关来实现。

早在20世纪60年代,电源的开关方式调试首先应用在军用电源的设计中。它的优势在于重量轻和效率高,可以控制均衡电量的加载,就是控制均衡电压的供给,通过高速动作的开关量的开和关来实现。这种不同于线性稳压方式的电源称开关电源。

嵌入式控制系统的MCU一般都需要一个稳定的工作电源才能可靠工作。而设计者多习惯采用线性稳压器件(如78xx系列三端稳压器件)作为电压调节和稳压器件来将较高的直流电压转变为MCU所需的工作电压。这种线性稳压电源的线性调整工作方式在工作中会造成较大的“热损失”(其值为V压降X I符号),其工作效率仅为30%~50%。加之工作在高频粉尘等恶劣境下往往将嵌入式工业控制系统置于密闭的容器中,不仅工作效率低,而且“热损失”产生的热量在密闭容器内的聚集也加剧了MCU的恶劣工况,从而使嵌入式控制系统的稳定性能变得很差。

而开关电源调节器件则以完全导通或关断的方式工作。因此,工作时要么是大电流流过低导通电压的开关管、要么是完全截止无电流流过。因此。开关稳压电源的功耗极低,其平均工作效率可达70~90%。在相同电压降的条件下,开关电源调节器件与线性稳压器件相比具有少得多的“热损失”。

而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降。因此,开关稳压电源可大大减小散热片体积和PCB板的面积,甚至在大多数情况下不需要加装散热片,从而减少了对MCU工作坏境的有害影响。

采用开关稳压电源来替代线性稳压电源作为MCU电源的另一个优势是:开关管的高频通断特性以及串联滤波电感的使用对来自电源的高频干扰具有较强的抑制作用,此外由于开关稳压电源“热损失”的减少,设计时还可提高稳压电源的输入电压,这有助于提高交流电压抗跌落干扰的能力。一、高频开关电源与普通电源不同之处

吉事励普通电源的特点:

通常是线性电源,线性电源是指稳压器管以线性状态工作的电源。但是,这与高频开关电源不同。开关管(在开关电源中通常将调整管称为开关管)在两种状态下工作:开-电阻非常小;关-阻力很大。

吉事励高频开关电源的特点:

高频开关电源通常由(脉冲宽度调制)PWM控制IC和MOSFET组成。随着电力电子技术的发展和创新,开关电源主要应用于体积小,重量轻,效率高等特点几乎应用到所有电子设备,其重要性是显而易见的。

高频开关模式电源是一种相对新型的电源。它具有效率高,重量轻,电压升高和降低以及输出功率高的优点。然而,由于电路在开关状态下工作,噪声相对较大。让我们简短地讨论一下降压型开关电源的工作原理。

该电路由一个开关K(实际电路中的三极管或场效应管),续流二极管D,储能电感器L,滤波电容C等组成。当开关闭合时,电源将为电流通过开关K和电感器L供电给负载,并且会将电流在电感器L和电容器C中存储一部分电能。由于电感器L的自感,在接通开关后电流会相对缓慢地增加,即输出不能立即达到电源电压值。一定时间后,开关将关闭。由于电感器L的自感作用(可以更清楚地假设电感器中的电流具有惯性作用),电路中的电流保持不变,即,它继续从左向右流动,该电流流过负载,从地线返回,流到续流二极管D的阳极,流过二极管D,然后返回到电感器L的左端,形成一个环路。可以通过控制开关闭合和断开的时间(即PWM脉冲宽度调制)来控制输出电压。当检测到输出电压以控制导通和截止时间以保持输出电压恒定时,就达到了稳压的目的。

二、高频开关电源和普通电源的相同之处

在于它们具有电压调节器,并使用反馈原理进行电压调节。不同之处在于,高频开关电源通过开关管进行调整,而普通电源通常通过三极管的线性增益范围进行调谐。

相比之下,开关电源的功耗小,交流电压的应用范围广,直流输出的纹波系数更好。

普通半桥开关电源的主要工作原理是上桥和下桥的开关管(频率高时,开关管为VMOS)一一导通。首先,电流从上桥开关管中流入,利用电感线圈的存储功能来收集电能。在线圈中,上桥的开关管关闭,下桥的开关管打开。电感线圈和电容器继续向外部供电。然后关闭下桥开关管并打开上桥以允许电流进入,就重复此过程。由于必须将两个灭弧室一个接一个地接通和关断,所以被称为开关电源。

线性电源不同。由于没有开关动作,因此上水管始终会排水。如果太多,水将漏出。当某些线性功率调节器管产生大量热量时,通常会发生这种情况,取之不尽的电能全部转化为热能。从这个角度来看,线性电源的转换效率非常低,但是如果发热量高,则组件的寿命将不可避免地减少,从而影响最终使用效果。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭