当前位置:首页 > 嵌入式 > 嵌入式大杂烩
[导读]星标「嵌入式大杂烩」,一起进步!链接:https://blog.csdn.net/weixin_37981492/解决问题:malloc在申请内存的时候,内存碎片问题会导致原本内存大小足够,却申请大内存失败;比如:原本内存还有10M内存,此时先申请4M内存,再申请16Bytes内...



解决问题:malloc在申请内存的时候,内存碎片问题会导致原本内存大小足够,却申请大内存失败;


比如:原本内存还有10M内存,此时先申请4M内存,再申请16Bytes内存,之后把4M内存释放掉,按理来说,此时应该还有 10M - 16Bytes 内存,但此时,再去申请8M的大内存,则申请失败。


因为malloc申请的内存,必须是一块连续的内存,但此时中间已经有16Bytes内存碎片导致内存不连续,所以申请内存失败;


以下是我针对碎片问题,对内存管理机制做出一种优化方案:在开机初始化内存之后,先申请一块1M左右内存(根据情况修改大小),用作内存碎片管理,然后把这1M内存分为很多个小内存,并把小内存的地址放在链接节点中,之后申请内存时,优先判断内存碎片管理中是否有满足大小的小内存。


有的话,直接使用提前申请的小内存就可以了,如果内存管理机制中没有适合的内存,但重新用malloc()函数申请;


接下来,解释我写的碎片管理机制:


1.mm_management_init()初始化函数

void mm_management_init(unsigned int free_memory_start, unsigned int free_memory_end)
传入参数free_memory_start是内存初始化之后,剩余可申请的首地址,该地址,一般会传入到main函数,如果main()函数没有传入该参数的话,可以在内存初始化之后,自己malloc(4)申请一下,把返回的地址作为mm_management_init()函数的第一个参数;

传入参数free_memory_end是可以申请的最大地址,每个IC各有不同;


mm_management_init()对16bytes,64bytes,256bytes,512bytes,1024bytes,4096bytes这些小内存做优化,提前计算小内存占用的总大小。


然后直接申请这块大内存占住,再把这块大内存分配给各个小内存,并记录在链表中,比如:mm_fix_16_head


2.mm_management_malloc()申请函数

unsigned int mm_management_malloc(unsigned int size)
申请内存的时候,先判断size大小,如果大小可以在内存管理机制中找到,则直接返回提前申请地址,如果大小不满足,或者小内存已被申请完,则用malloc重新申请

在内存管理机制中拿到的小内存,该链表节点的标记会设为MM_STATUS_BUSY


3.mm_management_free()

void mm_management_free(void *mm_ptr)
与mm_management_malloc()相反,先检查所有小内存链表是都有该地址,有的话就把该地址内存清0,并把标记设为MM_STATUS_FREE;如果是用malloc申请的,当时是free()释放掉;

接下来是代码


#include
#include

#define C_MM_16BYTE_NUM    (32)
#define C_MM_64BYTE_NUM    (16)
#define C_MM_256BYTE_NUM   (12)
#define C_MM_512BYTE_NUM   (12)
#define C_MM_1024BYTE_NUM   (18)
#define C_MM_4096BYTE_NUM   (30)

#define C_MM_16BYTE     (16)
#define C_MM_64BYTE     (64)
#define C_MM_256BYTE    (256)
#define C_MM_512BYTE    (512)
#define C_MM_1024BYTE    (1024)
#define C_MM_4096BYTE    (4096)

#define C_MM_MAX_SIZE    C_MM_4096BYTE //碎片管理最大的碎片大小

#define MM_STATUS_FREE    (0) //0:表示内存空闲
#define MM_STATUS_BUSY    (1) //1:表示内存已被申请

#define MM_STATUS_OK                (0)
#define MM_STATUS_FAIL              (1)

typedef struct mm_node_struct {
unsigned int *mm_node; //存放内存节点指针
unsigned short   iflag; //指针是否空闲
struct P_MM_Node_STRUCT *next; //指向下一个内存节点指针
} MM_Node_STRUCT, *P_MM_Node_STRUCT;

typedef struct mm_sdram_struct {
unsigned int count;
P_MM_Node_STRUCT  *next;
} MM_SDRAM_STRUCT, *P_MM_SDRAM_STRUCT;

static MM_SDRAM_STRUCT mm_fix_16_head;
static MM_SDRAM_STRUCT mm_fix_64_head;
static MM_SDRAM_STRUCT mm_fix_256_head;
static MM_SDRAM_STRUCT mm_fix_512_head;
static MM_SDRAM_STRUCT mm_fix_1024_head;
static MM_SDRAM_STRUCT mm_fix_4096_head;

static P_MM_SDRAM_STRUCT pmm_fix_16_head =

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭