当前位置:首页 > 工业控制 > 工业控制
[导读]直流电源的纹波和噪声是评估电源质量的重要参数,它们反映了电源输出的不稳定性和干扰情况。

直流电源纹波和噪声是评估电源质量的重要参数,它们反映了电源输出的不稳定性和干扰情况。大的纹波或噪声可能会导致系统工作不稳定、传感器误差增加、模拟信号失真等问题。因此,在设计和选择电源时,正确测量和评估纹波和噪声水平是非常重要的。

本文将介绍如何测试直流电源的纹波和噪声,并提供相应的测量方法和技巧。直流电源输出的交流杂散成分被称为纹波和噪声,或称作周期和随机偏差(PARD ),是描述电源质量的参数,测量值为真有效值(RMS)或峰峰值(Vpp),通常是在 20Hz ~20MHz带宽范围内指定,它们反映了电源输出中的不稳定性和干扰情况。然而,它们的具体定义和特点略有差异。

电源纹波(Power Ripple)

电源纹波是指电源输出中存在的周期性变化或波动。通常以交流信号的形式存在于直流电源输出中。电源纹波可以由电源设计、电源滤波器等因素引起,也可能受到负载变化或其他外部干扰的影响。电源纹波的频率通常与电源输入频率相关,如交流电源的纹波频率为50Hz或60Hz。

电源噪声(Power Noise)

电源噪声是指电源输出中存在的非周期性的随机干扰见图1。这些干扰信号可以来自电源本身的内部电子元件或外部环境的干扰。电源噪声通常是宽带的,并且在频谱上分布广泛。

电源纹波与噪声的大小常用峰峰值(Vpp)或真有效值(RMS)进行衡量,单位为伏特(V),电源纹波与噪声值是峰峰值还是有效值非常重要。峰峰值提供有关高幅度、短持续时间尖峰的信息,而有效值则有利于确定预期的信噪比。

电源纹波和电源噪声都对电路性能和系统稳定性产生影响。大的纹波或噪声可能会导致系统工作不稳定、传感器误差增加、模拟信号失真等问题。因此,在设计和选择电源时,需要根据应用要求考虑电源纹波和噪声水平,并采取适当的措施来降低其影响,所以如何正确测量电源的纹波和噪声变的至关重要。

对于直流电源,在测试纹波与噪声时,所使用的电子负载应工作于 CR 模式。负载的纹波与噪声指标要低于被测电源。这在测量电源的纹波与噪声时尤为重要,因为线性电源通常有优良的纹波噪声指标,例如罗德与施瓦茨公司的HMP系列电源其电压纹波与噪声可达1.5mV(RMS)以下。同时应使用可调交流源向被测电源施加输入。在规定电源最低和最高交流输入,以及规定的最低和最高源频率处进行纹波与噪声测量。


直流电源真有效值(RMS)测量

HMP4000系列电源(HMP4040)峰峰值(Vpp )测量

测试设备:交流电源、电子负载、数字示波器、隔直电容

在进行纹波与噪声测量时,正确连接仪器和被测电源十分重要。由于纹波与噪声包括低电平的宽带信号,主测试装置应注意地环路、正确的屏蔽和阻抗匹配。可用数字示波器作峰峰值测量。由于需要测量高频噪声尖峰,因此为进行正确采样,示波器的采样率至少要比最高纹波与噪声频率高5倍。为消除电缆振铃和驻波,典型配置中包括在两端以50Ω端接的同轴电缆,要把电容器与信号路径串联,以阻塞直流电流。

同时,基于电网220V的AC输入的电源纹波包含了开关频率和工频成分,工频成份是整流之后的100Hz信号,要捕获两个完整100Hz周期需要20ms,所以,建议时基设置为2ms/div以上,由存储深度=采样率×采样时间可知,提高示波器的存储深度可以间接提高示波器的采样率:当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形,所以存储深度与采样率在测试电源的纹波与噪声中对测试结果的准确性很重要,通过使用罗德与施瓦茨的MXO44系列示波器800M存储深度与5Gsample/s的采样率以及最高18位的ADC架构,可以更完整的捕获电源纹波与噪声的波形。

真有效值(RMS)测量

测试设备:交流电源、电子负载、数字示波器、高频毫伏表、隔直电容真有效值测量需要用到高频毫伏表,与峰峰值次测量相同这两种测量都应防止出现地环路。由于大多数示波器和高频毫伏表都使用以地为参照的输入,测试电源以地为参照的输出,此时很可能产生地环路见图5。在这种情况下,为避免地环路问题,可以使用具有浮地(差分)输入的仪器。


直流电源真有效值(RMS)测量

真有效值(RMS)测试连接框图

在进行第一组纹波与噪声测量时,交流源的电压和频率应设置于规定的最小值,被测电源在最小,然后为最大额定负载值。第二组纹波与噪声测量时,交流源应设置于规定的最大幅度和频率,被测电源在最小,然后为最大负载值。为测试多路输出电源,在进行各路输出的纹波与噪声测量时,所有其它输出应先设置在最小负载,然后至最大负载。

测试注意事项:

1、尽量使用高垂直分辨率示波器(建议8bit以上);

2、示波器采样率指标至少为纹波与噪声频率的5倍;

3、选择存储深度长的示波器,以保证波形不失真;

4、尽量使用示波器最小量程以降低示波器本底噪声;

5、根据需要使用带宽限制功能。

声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭