当前位置:首页 > 技术学院 > 技术前线
[导读]“波束赋形”这个概念可以拆分成“波束”和“赋形”这两个词来理解。“波束”里的波字可以认为是电磁波,束字的本意是“捆绑”,因此波束的含义是捆绑在一起集中传播的电磁波;而赋形可以简单地理解为“赋予一定的形状”。合起来,波束赋形的意思就是赋予一定形状集中传播的电磁波。

波束赋形,作为5G的核心技术之一,总是伴随着AAU,大规模MIMO等概念出现,这一切看似如此地天经地义。

5G支持高达100GHz的载波频率,这在无线传播领域带来了许多挑战。随着载波频率的增加,由于相对于波长的固定天线尺寸变小,路径损耗增加。然而,在较高的载波频率下较小的天线尺寸意味着更多的天线将安装在相同的区域中。可以通过使用更多的天线来克服随载波频率而增加的路径损耗,而不必增加天线阵列的总体物理尺寸。此外,随着载频增加到大约10GHz以上,衍射将不再是主要的传播机制。超过10GHz,反射和散射将是非视线传播链路最重要的传播机制。此外,随着载波频率的增加,传播到建筑物中的穿透损耗趋于增加,这可能导致建筑物内覆盖对于部署在室外的gNB来说不切实际。

大规模天线阵列对于在NR系统中提供高覆盖率和容量性能至关重要。大规模MIMO系统提供了几个好处:通过使用高增益自适应波束赋形来增强覆盖范围,通过使用高阶空间复用来增强容量。大规模天线阵列的覆盖增强能力对于缓解较高载频下的传播挑战至关重要。容量增强能力对于以高密度部署(例如,在较低载波频率下)运行的干扰受限系统将是重要的。此外,MIMO技术可以将能量转向所需的方向,而较窄的波束宽度可以在系统中产生较少的干扰。通过使用有源天线系统(AAS:active antenna system),还可以实现更好的能效和更好的业务条件适应性。

对于5G接入,单用户、多用户和波束赋形解决方案是必不可少的。由于不同的载波频率和部署场景,可以设想使用不同的传输和接收技术。图1和图2所示的全数字基带、混合阵列、模拟/RF阵列解决方案将以各种方式在gNB和UE的不同实现中使用。此外,以前向兼容的方式指定在特定载波频率和带宽上使用哪种技术是困难的,并且在标准化方面并不可取。然而,理解不同的候选架构对于定义与天线阵列架构无关的系统非常重要。如图1和图2所示,三种主要阵列架构之间的差异在于波束赋形部署发生的位置(如射频/模拟域与基带/数字域)。

然而,这简单的四个字背后却隐藏着诸多玄机,默默驱动着5G车轮的飞速运转。下面,蜉蝣君将尝试抽丝剥茧,丝丝入扣地揭开波束赋形的神秘面纱。看完本文,你将会了解到:

什么是波束赋形?

波束赋形的基本原理是什么?

5G怎样实现波束赋形?

1、什么是波束赋形?

“波束赋形”这个概念可以拆分成“波束”和“赋形”这两个词来理解。“波束”里的波字可以认为是电磁波,束字的本意是“捆绑”,因此波束的含义是捆绑在一起集中传播的电磁波;而赋形可以简单地理解为“赋予一定的形状”。合起来,波束赋形的意思就是赋予一定形状集中传播的电磁波。


干货!5G如何实现波束赋形?

其实,我们常见的光也是一种 电磁波,灯泡作为一个点光源,发出的光没有方向性,只能不断向四周耗散;而手电筒则可以把光集中到一个方向发射,能量更为聚焦,从而照地更远。

无线基站也是同理,如下图所示,如果天线的信号全向发射的话,这几个手机只能收到有限的信号,大部分能量都浪费掉了。


干货!5G如何实现波束赋形?

而如果能通过波束赋形把信号聚焦成几个波束,专门指向各个手机发射的话,承载信号的电磁能量就能传播地更远,而且手机收到的信号也就会更强。因此,波束赋形在无线通信中大有可为。

2、波束赋形的基本原理是什么?

波束赋形的物理学原理,其实就是 波的干涉现象。百度百科上定义如下:频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,而且振动加强的区域和振动减弱的区域相互隔开。想象一下,在湖边漫步时,你和女朋友在相距很近的两点激起水波,两朵涟漪不断散开,然后交叠起来,形成了下面的图样。


干货!5G如何实现波束赋形?

可以看出,有的地方水波增强,有的地方则减弱,并且增强和减弱的地方间隔分布,在最中间的狭窄区域最为明显。如果波峰和波峰,或者波谷和波谷相遇,则能量相加,波峰更高,波谷更深。这种情况叫做 相长干涉。反之,如果波峰和波谷相遇,两者则相互抵消,震动归于静寂。这种情况叫做 相消干涉。如果把这个现象抽象一下,可以得到下图:


干货!5G如何实现波束赋形?

在两个馈源正中间的地方由于相长干涉,能量最强,可以认为形成了一个定向的波束,也叫做主瓣;两边则由于相消干涉能量抵消,形成了零陷,再往两边又是相长干涉,但弱于最中间,因此称作旁瓣。如果我们能继续增强正中央主瓣的能量,使其宽度更窄,并抑制两边的旁瓣,就可以得到干净利落的波束了。


干货!5G如何实现波束赋形?

其实,普通天线一直在做这样的事情。天线内部排布着一系列的电磁波源,称作振子,或者天线单元。这些天线单元也利用干涉原理来形成定向的波束。


干货!5G如何实现波束赋形?

由上图可以看出,纵向排列的天线单元越多,最中间的可集中的能量也就越多,波束也就越窄。但这只是一个垂直截面而已,其实完整的波束在空间是三维的,水平和垂直的宽度可能截然不同。下图是一个天线的振子排列,以及辐射能量三维分布图。


干货!5G如何实现波束赋形?

可以看出,上述天线内振源的排布方式为纵向,横向的数量很少,因此其波束在垂直方向的能量集中,而水平方向的角度还是比较宽的,像一个薄薄的大饼。这种传统的天线水平方向的辐射角度多为60度,进行大面积的地面信号覆盖是一把好手,但要垂直覆盖高楼就有些力不从心了,称作“波束赋形”还是不够格。如果我们把这些天线单元的排布改成矩形,电磁波辐射能量将在最中央形成一个很粗的主瓣,周边是一圈的旁瓣,这就有点波束赋形的意思了。


干货!5G如何实现波束赋形?

为了让波束更窄能量更集中,天线单元还需要更多更密,水平和垂直两个维度也都要兼顾,原本的天线就变成了大规模天线阵列。


干货!5G如何实现波束赋形?

这下,生成的波束就犀利多了,用大规模天线阵列来支持波束赋形,稳了!

但是这样还有问题,那就是这个最大波束位于正中央,且其传播方向和天线阵列垂直,而手机是一直随着用户移动的,所在的位置完全不确定,主波束虽然犀利,但照射不到手机上也是白搭。那么,能不能让波束偏移一定的角度,对准手机来发射呢?

首先我们看看中央的主波束的形成过程:多列波的相位相同,也就是波峰和波谷在同一时间是对齐的,则它们到达手机时,就可以相长干涉,信号通过叠加得以增强。


干货!5G如何实现波束赋形?

如果手机和天线阵列有一定的夹角,则各列波到达手机时,相位难以对齐,可能是波峰和波谷相遇,也可能是在其他相位进行叠加,难以达到相长干涉,信号叠加的效果。


干货!5G如何实现波束赋形?

这可咋办?总不能通过旋转天线来让波束跟随手机吧?

其实, 周期性是波最大的特点,不同的相位总是周期性的出现,错过了这个波峰,还有下一个波峰要来,因此相位是可以调整的。通过调整不同天线单元发射信号的振幅和相位(权值),即使它们的传播路径各不相同,只要在到达手机的时候相位相同,就可以达到信号叠加增强的结果,相当于天线阵列把信号对准了手机。


干货!5G如何实现波束赋形?

下图是一个示例,可以看出天线阵列通过调整发射信号的相位,让波束偏移了θ度,从而可以精确对准手机发射信号。


干货!5G如何实现波束赋形?

3、5G怎样实现波束赋形?

由此可见,波束赋形的关键在于天线单元相位的管控,也就是天线权值的处理。根据波束赋形处理位置和方式的不同,可分为数字波束赋形,模拟波束赋形,以及混合波束赋形这三种。所谓模拟波束赋形,就是通过处理射频信号权值,通过移相器来完成天线相位的调整,处理的位置相对靠后。


干货!5G如何实现波束赋形?

模拟波束赋形的特点是基带处理的通道数量远小于天线单元的数量,因此容量上受到限制,并且天线的赋形完全是靠硬件搭建的,还会受到器件精度的影响,使性能受到一定的制约。


干货!5G如何实现波束赋形?

数字波束赋形则在基带模块的时候就进行了天线权值的处理,基带处理的通道数和天线单元的数量相等,因此需要为每路数据配置一套射频链路。


干货!5G如何实现波束赋形?

数字波束赋形的优点是赋形精度高,实现灵活,天线权值变换响应及时;缺点是基带处理能力要求高,系统复杂,设备体积大,成本较高。Sub6G频段,作为当前5G容量的主力军,载波带宽可达100MHz,一般采用采用数字波束赋形,通过64通道发射来实现小区内时频资源的多用户复用,下行最大可同时发射24路独立信号,上行独立接收12路数据,扛起了5G超高速率的大旗。


干货!5G如何实现波束赋形?

在毫米波mmWave频段,由于频谱资源非常充沛,一个5G载波的带宽可达400MHz,如果单个AAU支持两个载波的话,带宽就达到了惊人的800MHz!如果还要像Sub6G频段的设备一样支持数字波束赋形的话,对基带处理能力要求太高,并且射频部分功放的数量也要数倍增加,实现成本过高,功耗更是大得吓人。

因此,业界将数字波束赋形和模拟波束赋形结合起来,使在模拟端可调幅调相的波束赋形,结合基带的数字波束赋形,称之为 混合波束赋形。混合波束赋形数字和模拟融合了两者的优点,基带处理的通道数目明显小于模拟天线单元的数量,复杂度大幅下降,成本降低,系统性能接近全数字波束赋形, 非常适用于高频系统。


干货!5G如何实现波束赋形?

这样一来,毫米波频段的设备基带处理的通道数较少,一般为4T4R,但天线单元众多,可达512个,其容量的主要来源是超大带宽和波束赋形。在波束赋形和Massive MIMO的加成之下,5G在Sub6G频谱下单载波最多可达7Gbps的小区峰值速率,在毫米波频谱下单载波也最多达到了约4.8Gbps的小区峰值速率。

5G,也因此拥有了灵魂。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭