当前位置:首页 > 汽车电子 > 汽车电子
[导读]每年,汽车制造商都会为汽车配备越来越多的传感器和功能,从而增加汽车中的电子内容并增加其电力需求。随着功率水平的提高,曾经依赖低压差线性稳压器 (LDO) 的工程师现在可能需要使用降压拓扑来满足目标效率。

每年,汽车制造商都会为汽车配备越来越多的传感器和功能,从而增加汽车中的电子内容并增加其电力需求。随着功率水平的提高,曾经依赖低压差线性稳压器 (LDO) 的工程师现在可能需要使用降压拓扑来满足目标效率。

降压转换器可以以更高的效率提供比典型 LDO 更多的功率,但有一个缺点 - 其开关特性会产生电磁干扰 (EMI),这对于汽车应用来说可能是一个严重问题。幸运的是,工程师可以使用许多技巧和工具来降低 EMI,包括优化电路板布局、利用 IC 功能以及添加电路。

DC/DC 转换器会因输入纹波、与附近电路的电和磁耦合以及电磁辐射而产生 EMI。 EMI 会干扰 AM/FM 无线电接收器和其他敏感设备,例如主机或高级驾驶员辅助系统 (ADAS) 传感器。严重的 EMI 可能会在收音机和主机音频中产生静态噪声或其他类型的噪声,干扰 ADAS 传感器,并降低其他系统的性能。

为了防止这种严重的性能下降,工程师需要设计符合官方标准的系统,例如国际无线电干扰专业委员会 (CISPR) 25 5 级。由于不良布局可能导致任何设备无法达到标准机构设定的 EMI 限制,因此重要的是在电路板布局期间遵循良好的布局优化实践。降压转换器最重要的做法是:

· 减少电压快速变化(高 dv/dt)的节点表面积,以及

· 减小快速变化电流(高 di/dt)的电流环路面积。

这两条基本规则将决定工程师放置某些组件的位置,以最大限度地减少 EMI。

不幸的是,即使是最优化的 PCB 布局也无法避免所有与 EMI 相关的问题。此外,由于电路板尺寸和形状或时间限制,通常无法像我们希望的那样优化 EMI 布局。例如,非常紧凑的布局可能需要您将功率电感器放置在电路板的底部,或者将输入电容器放置在距离 IC 稍远的位置,以尽量减少 EMI。

这些和其他布局限制可能会导致 EMI,从而降低系统性能。即使有经验和细心,董事会也可能需要进一步优化。这些额外的董事会修订需要时间和金钱。那么,除了优化布局以最大限度地降低应用的 EMI 之外,您还可以做什么呢?

克服电路板布局限制

如果无法优化布局以获得最佳 EMI,某些 DC/DC 转换器会在器件级别提供许多封装和功能改进,以帮助最大限度地降低 EMI 并更容易满足 CISPR 25 5 类限制。这些功能使电路板设计与布局更加无关;换句话说,它们可以帮助弥补布局的缺陷。

例如,扩频功能可扩展谐波能量以降低峰值和平均 EMI 测量的最大值。它通过抖动开关频率(加减一定百分比)来扩展频谱密度来实现这一点。例如,扩展 ±2% 会看到 25次及更高次谐波上的谐波能量完全混合或重叠,而不是固定频率,这将保持在基频上间隔的谐波尖峰。能量在较高频率中均匀分布,从而产生较低的测量值包络,需要较少的滤波和布局优化,从而节省时间和金钱。

转换速率控制是另一个有助于提高 EMI 性能的功能。 EMI 的主要来源是开关环。开关振铃是由高侧 FET 快速导通引起的,它快速从输入电容拉电流,导致输入寄生环路电感和寄生电容谐振而产生数百兆赫的振铃低侧 FET 的。减慢上升时间可以减慢即时电流消耗,从而减少振铃和 EMI。可以通过添加与启动电容器串联的电阻器(大约几欧姆)来减慢上升时间,并且某些器件具有专用的启动电阻器引脚。这里需要权衡:减慢 FET 的转换可以最大限度地降低 EMI,但也会增加开关损耗,从而降低效率。

还有一些封装级功能有助于抑制 EMI。 TI 的 HotRod 封装就是一个例子,它消除了内部键合线,如图1所示。不连续电流会导致开关节点产生数百兆赫兹的振铃,从而产生耦合和辐射,从而产生 EMI。去除输入电容器不连续电流的高 di/dt 环路路径中的键合线可降低环路电感。这反过来又减少了振铃中的能量,从而降低了 EMI。LM61460-Q1和LM53635-Q1等器件采用 HotRod 封装。

图 1通过该横截面视图,工程师可以比较标准引线键合四方扁平无引线 (QFN) 封装和 TI 的 HotRod QFN。

其他封装级功能包括优化的引脚排列。器件可以通过组织引脚布局来提高 EMI 性能,从而使输入电容器等关键路径保持尽可能小。设备通常将 VIN 和 GND(或 PGND)引脚彼此相邻放置,以便为电容器的连接提供优化的位置。

更进一步的是对称引脚排列。将 VIN/PGND 对称地放置在封装的两侧,可以使输入环路磁场保持独立,从而进一步降低 EMI。许多 DC/DC 降压转换器(例如LMR33630、LMR36015、LM61460和LMQ61460-Q1)都具有对称的 VIN/PGND 引脚对(图 2b)。

集成输入电容器

下一代 EMI 优化封装使用集成电容器来进一步降低输入寄生电感。 LMQ61460-Q1 在两侧均包含两个集成输入旁路电容器,每个 VIN/PGND 对各一个。这些电容器是横跨右上和右下引脚对(VIN 和 PGND)的黑色矩形,如图 2a所示。图 2b 显示了器件引脚排列以供参考。

最大限度地减少高频 EMI 尤为重要,因为汽车应用中常见的较高输入电压和较高输出电流可能会加剧该领域的问题。

图 2 X 射线图像显示了带有集成电容器 (a) 的 LMQ61460-Q1 降压静音转换器,您可以将其与引脚排列参考 (b) 进行比较。

虽然 EMI 确实给汽车应用带来了挑战,但如果设计工程师遇到电路板布局限制,他们也并非没有选择。有很多方法可以应对这一挑战,从战略器件引脚排列到低电感封装、转换速率控制、扩频和集成电容器等集成功能。

这些功能使工程师能够放松严格的 EMI 布局优化的要求,以换取全面的布局,从而为更好的热性能和/或更小的解决方案尺寸提供更多的优化空间。这些功能可改进您的设计,以自信地满足标准机构设定的 EMI 限制。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭