当前位置:首页 > 消费电子 > 消费电子
[导读]示波器测量DC/DC转换器的输出电压纹波;电压表1测量输出电压;输出电流可通过测量电压表2的分流电阻器两端的电压来获取。

DC/DC转换器测试系统中的电源噪声

图1显示为DC/DC转换器测试系统。DUT是一个由电源进行供电的DC/DC转换器,连接了一个负载电阻器。示波器测量DC/DC转换器的输出电压纹波;电压表1测量输出电压;输出电流可通过测量电压表2的分流电阻器两端的电压来获取。

为了安全起见,电源、示波器、电压表1与电压表2的输入源均被接地至GND。


图片

什么是电源噪声

电源噪声可被分为两种类型,一种是在接地回路中产生的共模噪声,另一种是在正负线路中出现的差分(正常)模式噪声。共模噪声作用于接地(GND)线与负线上。当电源电缆插在插座上时,GND端子接地。


图片

如何减少电源噪声?

那么差分模式噪声与共模噪声是如何进行系统的呢?而又有什么办法可以减少这些杂声呢?

1

差分模式噪声是如何进入DUT的?

正极与负极电缆的布线将差分模式噪声传输至DUT。而DUT如何抑制噪声取决于他们的电源抑制比(PSRR)。DUT对差分模式噪声的耐受性可通过确定噪声频率特性如何影响DUT的输出来测量。

为了减少噪声,使用电缆电感并在DUT的输入端放置一个具有良好高频特性的电容器可能会有所帮助。如图3所示,在线环中由于差分模式电流,可能会产生磁通量。

此类噪声会被发射至空气中,从而影响到邻近的设备。所以为了抑制此类噪声的发射,请扭转正极与负极的电缆。


图片

2

共模噪声是如何进入DUT的?

共模噪声出现在通过GND触点(公共接地)传输的电源的正极与负极线路中。也就是说,共模噪声同时进行GND与负极线。相同量的共模噪声(电压)也同样出现在施加差分模式噪声(电压)与DC电压的正极线上。

当共模噪声进入DUT时,根据DUT的信号线与GND之间的杂散电容,共模噪声可能会转换为差分模式噪声,从而影响DUT的输出性能。如图4所示,如果有一个大的接地回路与导线回路,可能会由于噪声电流产生磁通。

此类噪声会被发射至空气中,影响邻近的设备(如测试设备)。为了减少此类噪声,需要缩小环路。可以按照下图5的方法B将DUT的GND进行接地来实现。


图片


图片

3

如何防御共模噪声?

在上图4与上图5所示的两种情况下(方法A与方法B),都存在着接地电路,所以共模噪声与磁通是无法避免的。为了防止共模噪声的发生,可参考下图,在电源的接地与电源的负极端子之间加一个电容器或短导线。


图片

但是,当将下图7与图6进行对比时,会发现两者虽然相似,但是图7在DUT输入的GND与负极端子之间添加了一个电容器与短导线。

虽然看起来没有大问题,但是噪声电流Iw1与Iw2增加,磁通量变得比图4与图5中的磁通量更强。这会导致电波干扰测量系统与其他邻近系统。另外,这也有助于产生差分模式的噪声(Vw1 Vw2)


图片

4

共模扼流圈

在图7的情况下,如果噪声电流减少,磁通噪声也能减少,在图8中增加了一个共模扼流圈后,导线回路上的电缆阻抗将增加。相应的Iw1与Iw2可减少共模扼流圈,也可阻挡外部噪声(磁通量)。

因此,可将其添加在图6所示的系统示例中。图9则显示了共模扼流圈的阻抗(Z)与Iw之间的关系。如果Z增加则Iw就会减少。因此,磁通量也将减少。


图片

5

总结

对于如何控制电源噪声,以及发生测试系统中的噪声持续存在的现象,作为总结可以参考下面的图10.并可以尝试以下操作。

A) 扭转正极与负极的电缆。

B) 将电源的输出端连接至GND或用电容器连接。

C) 避免接地回路

*1:将共模扼流圈应用于电源输出也是有效的。


图片
声明:该篇文章为本站原创,未经授权不予转载,侵权必究。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭