当前位置:首页 > EDA > 电子设计自动化
[导读]ADS7846是美国Burr-Brown公司推出的新一代4线制触摸屏控制器,当与触摸屏连用,只要笔或手指点触摸在屏上时,即可迅速得到该点的位置信号以达到在触摸屏表面寻址的目的。

ADS7846是美国Burr-Brown公司推出的新一代4线制触摸屏控制器,当与触摸屏连用,只要笔或手指点触摸在屏上时,即可迅速得到该点的位置信号以达到在触摸屏表面寻址的目的。文中详细介绍了该芯片的基本原理、特点、引脚功能、主要参数及典型应用电路。

1、概述

ADS7846是美国Burr-Brown公司推出的新一代4线制触摸屏控制器,它在与触摸屏连用时,一旦笔或手指点触摸在屏上,可迅速得到该点的位置信号,从而达到在触摸屏表面上寻址的目的。ADS7846 是典型的逐步逼近寄存器型A/D变换器,其结构以电容再分布为基础,包含了取样/保持功能。ADS7846的引脚与以前产品ADS7843的引脚完全兼容,只是增加了片内温度测量、触摸压力测量和电池电压测量三个功能。ADS7846的其它主要特点如下:

●具有4线制触摸屏接口;

●可单电源工作,电压范围为2.2~5.25V;

●内部自带+2.5V参考电压;

●具有125kHz的转换速率;

●带有微处理器的串行接口;

●具有可编程8位或12位的分辨率;

●具有1路辅助模拟量输入。

ADS7846可广泛用于有触摸屏的应用中,如个人数字助理(PDA)、笔记本电脑等。

ADS7846具有TSSOP-16和SSOP-16两种封装形式,它的引脚排列如图1所示,表1为各引脚的功能说明。


图1 ADS7846的引脚排列

图1 ADS7846的引脚排列

ADS7846的内部结构图,该芯片由6路通道选择器、逐步逼近式寄存器(SAR)、+2.5V参考电压、电容式D/A转换器(CDAC)、温度传感器等部分构成。ADS7846工作时需要一个外部参考(VREF引脚)和一个外部时钟(DCLK引脚)。其中外部基准电压的范围是1V~+Vcc,由它可以直接设定A/D输入通道的输入范围,其平均基准输入电流取决于变换速率。外部时钟主要用于控制SAR变换过程和同步串行数据I/O。

1 引 言

嵌入式触摸屏装置是人机交互设备,一般将触摸屏安装在液晶显示屏上面,利用微处理器对触摸屏与液晶显示屏进行控制,实现触摸屏对液晶显示屏的控制,方便、直观,取代了传统的键盘输入,成为嵌入式计算机系统的输入设备,广泛应用于电子产品与工业控制中。由于触摸屏边缘电阻不均匀,不易找到变化规律,难于实现触摸屏坐标与点阵式液晶显示屏相互对应,会出现触摸点与液晶显示屏显示信息错位,造成触摸控制信息不灵敏。本文基于AT89C51单片机和ADS7846芯片,辅以点阵式液晶显示屏,进行嵌入式触摸屏输入与显示系统的软硬件设计,实现触点测量与液晶屏上像素相对应,实现预期的控制功能,提高触摸控制的灵敏度。

2 液晶显示触摸屏的硬件设计

液晶触摸屏包含图形液晶显示模块和附着在显示屏上的触摸屏两部分,借助于触摸屏控制器ADS7846 与微处理器A T89S51 实现软硬件接口,通过检测用户在触摸屏上的触摸位置,实现显示与控制功能。

2. 1 触摸屏的工作原理

触摸屏从工作原理上可以分为电阻式、电容式、红外线式、声表面波式、矢量压力传感器式等多种形式,本文采用目前使用最为普遍的四线电阻式触摸屏。

电阻式触摸屏由4 层透明的复合薄膜组成,底层是玻璃或有机玻璃构成的基层,顶层则是经过硬化处理的光滑防刮塑料层,底层、顶层内表面间为两层铟锡氧化物( ITO) 透明导电层,形成触摸屏的两个工作面,在每个工作面的两端各涂有一条银胶,称为该工作面的一对电极,若在一个工作面的电极对上施加电压,则在该工作面上就会形成均匀连续的平行电压分布。当在X 方向的电极对上施加一确定的电压,而Y 方向电极对上不加电压时,在X 平行电压场中,触点处的电压值可以在Y+ (或Y - ) 电极上反映出来,通过测量Y+ 电极对地的电压大小,经过A/ D 转换便可得知触点的X 坐标值。同理,当在Y 电极对上加电压,而X 电极对上不加电压时,通过测量X +电极的电压,经过A/ D 转换便可得知触点的Y坐标。电阻式触摸屏有四线和五线两种,四线式触摸屏的测量过程工作原理如图1 所示。


液晶显示触摸屏的硬件设计

图1 四线电阻式触摸屏测量原理

触摸点P 处测量结果计算如下:


液晶显示触摸屏的硬件设计

2. 2 ADS7846 控制器

ADS7846 是Burr2Brown 公司的一款触摸屏专用控制器,其内部结构如图2 所示。


液晶显示触摸屏的硬件设计

图2 ADS7846 内部结构图。

ADS7846 内部由一个多路选择器和一个12位的A/ D 转换器构成,根据串行控制口的控制字控制多路选择开关的工作状态,控制工作面的工作电压,并把相应电极上的触点坐标位置对应的工作电压送到A/ D 转换器,变成数字量通过串行口再传递给CPU ,经过计算得到触点的X 、Y 方向的坐标,确定触点位置,程序根据触点坐标位置显示的信息执行相应的功能。

则P 点的二进制输出代码为:


液晶显示触摸屏的硬件设计

其中:V ref_full为加在ADS7846 内部A/ D 转换器上的参考电压。

ADS7846 控制字见表1 所示,S 为数据传输的起始标志位,改为必须为"1";A2、A1、A0 用于通道选择控制,坐标与通道选择之间的关系见表2 所示。MODE用于控制A/ D转换的精度", 1"选择8位", 0"选择12 位。SER/ DFR 选择输入参考电压模式", 1"为单端模式", 0"为差分模式。PD1、PD0选择省电模式:"00"为省电模式允许,在两次A/ D转换之间掉电,且中断允许;"01"与"00"相似,但不允许中断;"10"保留;"11"禁止省电模式。

表1 ADS7846 的控制字


液晶显示触摸屏的硬件设计

表2 ADS7846 的坐标与通道选择之间的关系


液晶显示触摸屏的硬件设计

ADS7846 与MCU 之间通过标准的SPI 接口相连接,如图3 所示。当检测到有触摸动作时,ADS7846 的笔中断请求端( PENIRQ) 输出一个低电平信号向MCU 发出测量触点坐标的中断请求。MCU 通过SPI 接口,选中ADS7846 ,发出坐标测量控制字,然后读取ADS7846A/ D 转换结果数据,经过两次控制即可分别得到触点位置的X 、Y 坐标。ADS7846 工作时序如图4 所示。


液晶显示触摸屏的硬件设计

图3 ADS7846 与MCU 之间SPI 接口。


液晶显示触摸屏的硬件设计

图4 ADS7846 与MCU 通信时序。

3 触点坐标与液晶显示屏控制功能对应定位的确定

本例中ADS7846 采用差动参考电压方式,以减小测量误差,由于触摸屏存在着个体差异,不同触摸屏边沿的测量值不同,测量值达不到0 或者满量程(4096) ,而液晶显示屏具有较为准确的定位数值,很难实现触摸屏与液晶显示屏的点与点一一对应,给编程调试带来很大麻烦,只能实现触摸屏与液晶显示屏之间的区域对应,不影响液晶显示屏的显示功能和触摸屏的控制功能。

触摸屏控制器ADS7846 通过SPI 接口连接到微控制器A T89S51 上。当发生触摸时, 由ADS7846 向A T89S51 提出中断请求, 接着A T89S51 就会响应该中断请求,通过SPI 读取ADS7846 的转换结果,得到触摸点的坐标。图5为中断服务子程序与ADS7846 测量子程序流程图。


液晶显示触摸屏的硬件设计

图5 中断服务子程序与ADS7846 测量子程序流程图。

为了有效地找到触摸屏触摸点与点阵式液晶显示屏对应区域坐标范围,按照液晶显示屏的显示功能区域的点阵坐标,按照液晶屏上显示的控制信息字符格式,合理选择水平线和竖直线,按照液晶显示和触摸屏控制功能区域进行触摸点数值测量,找到与液晶显示屏对应的触摸屏控制区域的触摸点数值范围。根据触摸屏触摸点坐标实测数据分析可以得到对应的液晶屏上像素点坐标。

液晶屏像素点坐标与触摸屏触摸点实测数值之间的关系可以表示为:


液晶显示触摸屏的硬件设计

式中: X 、Y 为触点测量值; ( Xmin , Ymin ) 和( Xmax ,Xmax ) 分别为触摸屏上的最大值和最小值坐标触点测量; ( X1 , Y1 ) 为触点在液晶屏上的像素坐标,表3 、表4 中数据为实测数据。

表3 实测竖直直线上等距离测量坐标值


液晶显示触摸屏的硬件设计

表4 实测水平直线上等距离测量坐标值


液晶显示触摸屏的硬件设计

值得注意的是,经测量触摸屏X 方向的转换值为从大到小, Y 方向的转换值为从小到大,坐标值在一定范围内基本是成线性变化的。但是在触摸屏的边缘地带X 方向输出电阻和Y 方向输出电阻的变化较大,是非线性关系,因此为了比较准确地标定触摸屏坐标,在大范围内采用线性变化的规律,而在边缘地带需采用查表的方式。

4 结 论

利用ADS7846 实现触摸屏控制,可以方便利用SPI 接口实现与单片机之间的接口。与点阵式液晶显示屏相配合使用,通过液晶屏与触摸屏之间的坐标变换,可以便捷实现工业控制,同时提高液晶屏的反映速度。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

基于ABB机器人生产线 ,设计了一种西门子PLC自保护智能控制系统 。该系统采用HK-FKGD40无线手持报警器 , 受机器人挤压时人员通过该报警器便可触发机器人智能判断 、自动回退运动实现自我解救 , 同时系统发出声光...

关键字: 无线手持报警器 自保护;智能 PLC ABB机器人 触摸屏

在科技飞速发展的当下,智能设备已深度融入人们的生活与工作。其中,PDA(Personal Digital Assistant,个人数字助理)作为一款集信息输入、存储、管理和传递于一体,且具备办公、娱乐、移动通信等多种功能...

关键字: 智能设备 触摸屏 微控制器

苏州 2025年5月27日 /美通社/ -- 5月24日-26日,第26届全国医院建设大会暨国际医院建设、装备及管理展览会(CHCC 2025)在武汉举行。艺卓(EIZO)携手术室视觉显示解决方案参展,以科技...

关键字: HC 医学影像 IO 触摸屏

随着手工酿造的普及和复杂程度的不断提高,许多酿酒师——尤其是小规模或独立的酿酒师——仍然依靠手工方法来记录和跟踪关键数据,如温度、pH值、体积和比重。这些读数通常使用手动仪器,记录在纸上或分散在电子表格和文档中,没有集中...

关键字: 触摸屏 物联网 DS18B20 传感器

随着嵌入式系统的广泛应用,触摸屏作为人机交互的重要接口,其驱动开发变得愈发重要。本文将详细介绍在嵌入式Linux环境下,触摸屏驱动的开发流程,从设备树的配置到校准算法的实现,为读者提供一个全面的开发指南。

关键字: 嵌入式Linux 触摸屏 校准算法 设备树

将您的树莓派Pico变成带有触摸屏界面的USB-HID设备!在这个项目中,我们将在Arduino IDE中设置编程环境,为3.5”Pico Touch LCD屏蔽配置库,测试基本功能,创建简单的按钮(用于复制和粘贴),显...

关键字: 树莓派 触摸屏 LCD Windows

‌激光治疗仪触摸屏接口设计‌主要包括触摸屏的工作原理、控制器工作原理以及在激光治疗仪中的应用。

关键字: 触摸屏 激光治疗仪

中国深圳 – TITAN Haptics泰坦触觉宣布推出DRAKE LFi触觉马达,旨在满足中国电子市场不断增长的需求。DRAKE LFi专为需要触觉反馈的设备设计,例如触摸屏和触觉按钮。这款新型触觉马达能够提供精准的局...

关键字: 消费电子 触摸屏 可穿戴设备

虽然无数关于未来交通的文章都以四轮电动车作为讨论重点,但在印度、马来西亚、泰国和印度尼西亚等诸多国家,出行更依赖于经济的两轮电动车,包括踏板式摩托车、重型摩托车、电动摩托车、电动轻便摩托车和电动自行车。这些两轮电动车紧跟...

关键字: 电动车 触摸屏 触摸控制器

触摸屏作为现代电子设备的重要组成部分,广泛应用于智能手机、平板电脑、智能穿戴设备、车载系统以及各类自助终端等领域。然而,触摸失灵作为触摸屏常见的故障之一,不仅影响用户体验,还可能导致设备无法正常使用。

关键字: 触摸屏 触摸失灵 设备
关闭