当前位置:首页 > 消费电子 > 消费电子
[导读]‌电池管理系统(BMS)是一种专门用于监督和管理电池组的技术,旨在提高电池的利用率、延长使用寿命,并确保使用过程中的安全性‌。

‌电池管理系统(BMS)是一种专门用于监督和管理电池组的技术,旨在提高电池的利用率、延长使用寿命,并确保使用过程中的安全性‌。BMS的核心功能包括实时监控电池的电压、温度和电流,防止电池出现过充电和过放电,确保电池系统的安全、稳定和高效运行。‌1BMS的定义和功能

BMS是一种电子系统,专门负责监控和管理可充电电池(无论是单个电池还是电池组)的运行状态。其主要功能包括:

‌电气安全保护‌:防止电池超出其安全工作区,避免化学反应失控,引发过热、热失控甚至爆炸。

‌电池寿命优化‌:通过实时监控和管理,优化电池性能并延长其使用寿命。

‌实时监测与反馈‌:提供电池状态信息,帮助用户和管理系统更好地了解电池的健康状况。

‌预警与保护机制‌:在电池出现异常时,及时发出警告并采取保护措施,防止事故发生。

BMS的应用场景

BMS广泛应用于各种需要电池管理的领域,包括:

‌电动汽车‌:电动汽车的电池管理系统是确保车辆安全、高效运行的关键部分。

‌储能系统‌:在可再生能源储存系统中,BMS用于监控和管理电池组,确保系统的稳定运行。

‌智能家居设备‌:如扫地机器人、电动吸尘器等,BMS帮助延长电池寿命并提高设备性能。

BMS的技术架构和设计特性

BMS的架构可以根据项目需求分为集中式和分布式两种:

‌集中式BMS‌:适用于电芯少的场景,具有成本低、结构紧凑、可靠性高的优点。

‌分布式BMS‌:适用于高容量、高总压的场景,能够更精细地管理每个电池单元的状态。

BMS的设计特性包括电池组保护管理和容量管理,通过电气保护和热保护等措施,确保电池在安全工作区内运行,从而延长电池寿命并提高系统可靠性。

EMS主要包括:信息采集模块、充放电均衡模块、信息集中处理模块以及显示模块。图1为自主研发的电动车电池能量管理系统(EMS)的结构图,其中信息采集模块主要完成实时采集电池组以及单体电池的电压、温度、电流等状态,对电池进行实时监控的同时也为均衡模块的开启与关闭提供依据。均衡模块主要完成对电池特性差异进行补偿,根据采集模块采集来的信息判断电池状态,对单节电池进行充放电均衡,来实现状态特性一致。信息集中处理模块负责将采集得到的数据进行处理、分析、计算(如SOC等),并监控均衡模块的工作,对其进行控制,同时与显示模块通信,在整个系统中起着承上启下的作用。显示模块作为唯一的人机交互接口,不仅承担着将所有数据、以及设备状态实时地显示给用户,让用户能够直观地看到电池状态和EMS工作效果,而且还为用户与EMS的控制交流提供接口,可以让用户设置参数,更改EMS工作状态,达到实时监管和控制的目的。如果没有显示模块人们就无法看到电池和EMS的信息,EMS的报警或提示信息无法通知到客户,一些报警状态得不到及时处理轻则造成电池损坏,重则会导致电动车工作失控,酿成严重事故。同样客户也无法根据情况来调整和控制EMS,也不能完全发挥EMS的作用。可见显示模块的人机交互功能是EMS中不可或缺的组成部分,从显示模块所需的功能看触摸屏是不错的选择。但如果购买市面上的触摸屏,不仅显示内容会受触摸屏本身显示功能固定的限制而降低显示设计的灵活度、影响显示质量,并且市面上触摸屏的价格也普遍较高,给产品增加了很大一部分成本,这无疑会大大降低产品的市场竞争力。基于这种情况本文提出一种以STM32F103单片机为控制核心的比较通用的液晶触摸屏的设计方案。


BMS的技术架构和设计特性

图1 EMS结构框图

1 触摸屏的种类及工作原理

触摸屏种类众多,可以分为电阻式、电容式、红外线式、声表面波式、矢量压力传感器等,其中电阻触摸屏使用最为普遍。触摸屏系统一般包括触摸屏控制器和触摸检测装置两个部分。其中,触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给微控制器,它同时能接收微控制器发来的命令并加以执行,触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触摸屏控制器。触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触摸屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口送到微控制器,从而确定输入的信息。其中触点坐标的求取方法是:如图2所示,给触摸屏的X+加正电压V,X-接地时,在X+,X-方向上会形成均匀的电压梯度,当屏幕有触摸时,可以通过读取Y+的电压,经过A/D转换后计算求得触摸点X坐标。同理,在Y+,Y-方向上加电压,可以通过X+上的值计算出触摸点Y坐标。计算坐标的公式如下:


BMS的技术架构和设计特性

式中,W 为触摸屏的宽度;H 为触摸屏的高度。

本方案采用的是四线电阻式触摸屏并且不使用专用的触摸屏控制器,直接由STM32F103控制以降低成本,如图2所示。


BMS的技术架构和设计特性

图2 四线电阻触摸屏示意图

2 方案用到的主要器件介绍

2.1 STM32F103介绍

方案中主控器件STM32F103单片机使用的是ARM 公司为要求性能高、成本低、功耗低的嵌入式应用专门设计的32位的ARMCortex-M3内核。

拥有可达128KB的嵌入式闪存、20kB的SRAM和十分丰富的外设:两个1μs的12位ADC,一个全速USB(OTG)接口,一个CAN 接口,三个4 M/S的UART,两个18 M/S的SPI,两个I2 C等。内部还集成了复位电路、低电压检测、调压器、精确的RC振荡器等,大大方便了用户的开发。该系列单片机不仅功能强大而且功耗相当低,在72 MHz时消耗36 mA(所有外设处于工作状态),相当于0.5 mA/MHz,待机时下降到2μA ,是32位市场上功耗最低的产品。综上STM32F103系列单片机的性能完全可以满足液晶触摸显示屏的所有控制需要,内置A/D可以用于触摸屏控制,丰富的I/O 接口可以用于与TFT液晶屏模块的通信,并且其本身自带CAN控制器可以作为与外界通信接口,用STM32F103做主控制器可以减少使用器件从而简化使整体电路,很好地达到降低EMS成本的目标。

2.2 TFT液晶屏模块

本方案选用的是3.5寸的TFT液晶屏模块,工作电压3.3 V,最大工作电流70 mA.支持320×240分辨率,内置230K内存显示可到256K色,可显示文字和图形,采用LED背光设计,使用软件即可对背光亮度进行调节,内置简体中文字库,支持2D的BTE引擎,同时建几何图形加速引擎,可以对显示对象进行复杂的操作如画面旋转功能、卷动功能、图形Pattern、双层混合显示和文字放大等等。这些功能将可节省用户在TFT屏应用的开发时间,提升MCU软件的执行效率并且使画面更加绚丽,显示功能更加丰富,使显示屏显示能力大大增强。提供8位或16位总线接口,方便与MCU的连线,适应性强,连接设计灵活。

3 硬件连接设计方案

3.1 总体构架

液晶触摸显示屏系统主要由微控制器STM32F103F103、TFT液晶屏模块、四线电阻触摸屏以及与外界通信的CAN总线接口组成。硬件模块连接如图3所示,其中四线电阻触摸屏的触摸检测装置安装在TFT液晶屏前面用于检测用户触摸的位置,本方案利用STM32F103 自带A/D 转换功能,由STM32F103实现触摸屏控制器的功能来直接控制四线电阻触摸屏,检测触摸信息并计算出触点坐标。然后STM32F103通过I/O接口与TFT液晶屏模块通信,将处理好的有效信息通过TFT 液晶屏显示出来。由于STM32F103内置CAN 总线控制器所以CAN总线接口可以直接从STM32F103的管脚引出,用来与EMS进行通信,完成现实信息采集,设置参数等功能。


BMS的技术架构和设计特性

图3 方案总体框图

3.2 STM32F103F103与四线电阻触摸屏的接口电路

如图4所示,STM32F103F103与四线电阻触摸屏直接通过自身的I/O口连接,实现触摸屏控制器功能。其中PA8、PA9、PA10、PA11分别作为四个三极管的控制端,通过控制三极管通断,来控制四线触摸屏的Y+、Y-、X+、X-.PA1,PA2是两个A/D转换通道,分别连接Y+和X+用于计算触摸点的X和Y坐标。PA3连接内部中断用于检测触摸屏是否有触摸动作。触摸屏平时运行时,令PA8、PA9、PA11输出0,PA10=1,即只让VT2导通。当有触摸动作时,D1导通给PA3一个中断信号,STM32F103接收到中断请求后立即置PA8=1,导通VT1,这样在Y+、Y-方向上就加上电压,同时启动A/D转换通道PA2,通过输入X+上电压计算出触摸点的Y坐标,然后同理令PA8、PA10为0,PA9、PA11为1,启动A/D转换通道PA1,通过输入Y+上电压计算出触摸点X的坐标。


BMS的技术架构和设计特性

图4 STM32F103与四线电阻触摸屏接口电路

3.3 STM32F103F103与TFT液晶屏模块控制器的接口电路

如图5所示,STM32F103F103通过I/O 接口与TFT液晶模块相连接,虽然很多的TFT液晶模块中内置的液晶屏控制器都支持SPI 接口通信(如ILI9325)但由于SPI传输速度较慢不利于液晶数据的快速传输,因此很多液晶模块都选择采用并口通信。

其中PB0-PB15分别与D0-D15相连作为数据通信口,PA0、PA4、PA5、PA6、PA7 分别连接RESET、CS、RS、WR、RD,作为控制口,实现复位、片选、指令数据切换、读写等控制功能。


BMS的技术架构和设计特性

图5 STM32F103F103与TFT液晶模块接口电路

4 软件设计

软件部分的编程采用C语言,一方面主要完成STM32F103对I/O 管脚的配置,用来实现对四线电阻触摸屏端子状态的控制,通过中断方式检测是否有触摸信息,配置A/D转换通道,读入电压根据公式计算出触点坐标。另一方面主要完成通过与TFT液晶模块的通信控制,实现触摸点坐标与液晶屏坐标的对应并有效完成显示任务。软件的开发环境是MDK,MDK 将ARM 开发工具RealView DevelopmentSuite(简称为RVDS)的编译器RVCT与Keil的工程管理、调试仿真工具集成在一起,支持ARM7、ARM9和最新的Cortex-M3核处理器,自动配置启动代码,集成Flash烧写模块,强大的Simulation设备模拟,性能分析等功能,与ARM 之前的工具包ADS等相比,RealView编译器的最新版本可将性能改善超过20%.具体流程如图6所示。


BMS的技术架构和设计特性

图6 程序流程图

基于STM32F103F103单片机的EMS液晶显示触摸屏的设计方案。STM32F103F103的高速、低耗的优越性能完全可以达到触摸屏的主控制芯片要求,TFT液晶显示器可以满足更复杂、多彩、灵活的显示任务,符合显示屏性能不断攀升的发展趋势。本设计充分利用了STM32F103芯片的优势,抛弃了传统触摸屏控制器控制触摸屏的方案,利用自身A/D完成了触摸屏功能,本方案大大简化了硬件电路结构,通信更可靠,编程也更加简洁,最终既能达到EMS显示要求,出色地显示和设置了系统所需要的数据,又能降低系统的成本,通过实际使用达到了良好的效果。鉴于当前电动车的快速发展,本方案可以拥有不错的应用前景。

电动车一直以清洁环保而备受关注,加上能源危机加剧、油价不断上涨,电动车也越来越受到用户的青睐。电动车一般采用锂电池供电,由多个单体电池串联成电池组作为动力电源。但由于各个串联单体电池特性不能保证完全一致,因此相同的电流下充电放电速度也会不同,如果不进行均衡干预,电池寿命会大大缩短,因此需要实时监控各个单体电池的状态、总电压、总电流,根据状态适时进行电池充放电均衡,并且充放电均衡时,均衡状态也要实时进行检测,所以就有了电动车电池能量管理系统(EMS)。实践证明EMS可以有效延长电动车电池使用寿命,是电动车中十分重要的管理系统。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭