当前位置:首页 > 嵌入式 > 嵌入式分享
[导读]在嵌入式系统领域,随着产品功能的不断迭代和更新,固件升级成为了一项至关重要的任务。传统的全量升级方式虽然直接有效,但在面对大量设备、大体积固件以及有限带宽的情况下,其效率和成本问题日益凸显。为此,差分升级(Delta OTA)技术应运而生,它通过仅传输新旧固件之间的差异部分,显著提高了升级效率,降低了带宽占用。本文将深入解析嵌入式系统固件差分升级技术,包括其原理、优势、实现步骤以及实际代码示例。


嵌入式系统领域,随着产品功能的不断迭代和更新,固件升级成为了一项至关重要的任务。传统的全量升级方式虽然直接有效,但在面对大量设备、大体积固件以及有限带宽的情况下,其效率和成本问题日益凸显。为此,差分升级(Delta OTA)技术应运而生,它通过仅传输新旧固件之间的差异部分,显著提高了升级效率,降低了带宽占用。本文将深入解析嵌入式系统固件差分升级技术,包括其原理、优势、实现步骤以及实际代码示例。


一、差分升级技术原理


差分升级技术的核心在于比较新旧固件之间的差异,并将这些差异部分生成一个差分包(Delta Package)。在设备端接收到差分包后,利用差分算法将差分包应用到旧固件上,从而生成新的固件。这一过程类似于文件系统的增量备份和恢复,但针对的是整个固件。


二、差分升级技术的优势


提高升级效率:由于只传输差异部分,差分升级显著减少了传输的数据量,从而提高了升级速度。

降低带宽占用:对于大规模设备部署场景,差分升级能够显著降低对网络带宽的需求。

减少存储空间占用:在设备端,差分升级只需存储差分包,而不需要完整的新固件,从而节省了存储空间。

三、差分升级技术的实现步骤


生成差分包:

使用差分算法比较新旧固件,生成差分包。

差分算法可以选择BSDiff、XDelta等成熟算法。

传输差分包:

将生成的差分包通过网络传输到设备端。

应用差分包:

设备端接收到差分包后,利用差分算法将差分包应用到旧固件上,生成新固件。

在应用差分包之前,通常需要进行完整性校验,以确保差分包未被篡改。

四、差分升级技术的实际应用


以基于STM32单片机的嵌入式系统为例,我们可以使用BSDiff算法生成差分包,并在设备端使用BSDiff算法应用差分包。以下是一个简化的代码示例:


c

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "bsdiff.h"


// 假设old_firmware和new_firmware分别为旧固件和新固件的文件路径

// delta_firmware为生成的差分包文件路径


void generate_delta(const char *old_firmware, const char *new_firmware, const char *delta_firmware) {

   FILE *old_file = fopen(old_firmware, "rb");

   FILE *new_file = fopen(new_firmware, "rb");

   FILE *delta_file = fopen(delta_firmware, "wb");


   if (!old_file || !new_file || !delta_file) {

       perror("Failed to open files");

       exit(EXIT_FAILURE);

   }


   fseek(old_file, 0, SEEK_END);

   long old_size = ftell(old_file);

   fseek(old_file, 0, SEEK_SET);


   fseek(new_file, 0, SEEK_END);

   long new_size = ftell(new_file);

   fseek(new_file, 0, SEEK_SET);


   void *old_data = malloc(old_size);

   void *new_data = malloc(new_size);


   if (!old_data || !new_data) {

       perror("Failed to allocate memory");

       exit(EXIT_FAILURE);

   }


   fread(old_data, 1, old_size, old_file);

   fread(new_data, 1, new_size, new_file);


   bsdiff(old_data, old_size, new_data, new_size, delta_file);


   free(old_data);

   free(new_data);


   fclose(old_file);

   fclose(new_file);

   fclose(delta_file);

}


// 假设delta_firmware为接收到的差分包文件路径

// old_firmware为设备端存储的旧固件文件路径

// new_firmware为升级后的新固件文件路径


void apply_delta(const char *old_firmware, const char *delta_firmware, const char *new_firmware) {

   FILE *old_file = fopen(old_firmware, "rb");

   FILE *delta_file = fopen(delta_firmware, "rb");

   FILE *new_file = fopen(new_firmware, "wb");


   if (!old_file || !delta_file || !new_file) {

       perror("Failed to open files");

       exit(EXIT_FAILURE);

   }


   fseek(old_file, 0, SEEK_END);

   long old_size = ftell(old_file);

   fseek(old_file, 0, SEEK_SET);


   void *old_data = malloc(old_size);

   fread(old_data, 1, old_size, old_file);


   bspatch(old_data, old_size, delta_file, new_file);


   free(old_data);


   fclose(old_file);

   fclose(delta_file);

   fclose(new_file);

}


int main() {

   const char *old_firmware = "old_firmware.bin";

   const char *new_firmware = "new_firmware.bin";

   const char *delta_firmware = "delta_firmware.bin";


   generate_delta(old_firmware, new_firmware, delta_firmware);

   apply_delta(old_firmware, delta_firmware, new_firmware);


   printf("Delta OTA completed successfully\n");


   return 0;

}

在这个示例中,generate_delta函数用于生成差分包,而apply_delta函数用于在设备端应用差分包。需要注意的是,这只是一个简化的示例,实际应用中还需要考虑文件校验、错误处理以及网络传输等细节。


五、结论


差分升级技术通过仅传输新旧固件之间的差异部分,显著提高了升级效率,降低了带宽占用和存储空间占用。在嵌入式系统领域,差分升级技术已经成为固件升级的主流方式之一。未来,随着物联网技术的不断发展,差分升级技术将发挥更加重要的作用。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭