你了解VCSEL吗?VCSEL的结构是怎样的?
扫描二维码
随时随地手机看文章
VCSEL可以使用传统的低成本LED封装来降低成本,现有应用中亦可使用VCSEL取代LED。VCSEL的波长非常稳定,对温度变化的敏感度较低,可在更大的温度范围内工作。为增进大家对VCSEL的认识,本文将对VCSEL、VCSEL的结构予以介绍。如果你对VCSEL具有兴趣,不妨和小编一起来继续往下阅读哦。
一、什么是VCSEL
VCSEL(垂直腔面发射激光器)是一种半导体激光器,其激光垂直于芯片表面发射,而非传统激光器的边缘发射。VCSEL结构紧凑、功耗低、响应速度快,且易于集成成阵列,广泛应用于短距离光通信(如数据中心)、3D传感(如手机人脸识别)、激光雷达(LiDAR)及工业测温等领域。其核心优势在于高效率和低成本,尤其在多通道并行传输中表现突出,是高速光互联和智能传感的关键组件。
用一句话类比:像微型“垂直探照灯”,能在微小空间内高效发射激光,支撑智能设备的“眼睛”和“神经”。
二、VCSEL的结构是什么样的
一个激光谐振器是由两面分散式布拉格反射器(DBR)平行于一个芯片主动反应区表面,此反应区是由一到数个量子井所构成,使激光光带存在于其中。一个平面的DBR是由几层不同高低折射率的透镜所组成。每层透镜的厚度为四分之一的激光波长,并给予超过99%的反射强度。为了平衡在VCSEL中增益区域的短轴长,高反射率的透镜是必要的。
在一般的VCSEL中,较高和较低的两个透镜分别镀上了p型材料和n型材料,形成一个接面二极管。在较为复杂的结构中,p型和n型区域可能会埋在透镜中,使较复杂的半导体在反应区上加工做电路的连接,并除去在DBR结构中电子能量的耗损。
VCSEL的实验室使用新的材料系统做研究,反应区可能会因短波长的外光源(通常是其他激光)而被泵。这使得VCSEL可以在不考虑达到良好的电路品质的额外问题下被论证;然而这样的装置对大多数的应用不是实际的。
波长从650nm到1300nm的典型VCSEL是以砷化镓] ( GaAs )和[ [铝镓砷化物] ](AlxGa(1-x)As)构成的DBR所组成的镓砷芯片为基底。GaAs/AlGaAs系统由于材料的晶格常数在组成有变动时,不会有非常强烈的改变,且允许多个晶格配对复生层成长于砷化镓的底层,所以非常适合用来制造VCSEL。然而,当Al分子增加时,铝镓砷化物的折射率就会变强,与其他系统比较起来,要组成一个有效的布拉格镜,所用的层数就会达到最少。
此外,在铝较集中的部分,一种氧化物会形成AlGaAs,而这种氧化物可以被用来限制VCSEL中的电流,达到低闸值电流的目的。
近来有两种主要的方法来限制VCSEL中的电流,依照其特性分成两种:离子内嵌VCSEL和氧化型VCSEL。
在90年代前期,电子通讯公司较倾向于使用离子内嵌VCSEL。通常使用氢离子H+植入VCSEL结构中,除了共振腔以外的任何地方,用以破坏共振腔周围的晶格结构,使电流被限制。90年代中期,这些公司们纷纷进而使用氧化型VCSEL的技术。氧化型VCSEL是利用VCSEL共振腔周围材料的氧化反应来限制电流,而在VCSEL结构内部含铝较多的金属层会被氧化。氧化型激光也常使用离子内嵌的技术。因此在氧化型VCSEL中,电流的路径就会被离子内嵌共振腔与氧化共振腔所限制。
由于氧化层的张力与其他的缺陷,始得共振腔出现“popping off”,因此最初使用氧化型VCSEL时遭遇到了许多困难。然而,经过了多次的测试,证明了VCSEL的realibilty是很完整的。在Hewlett Packard的氧化型VCSEL研究中指出,“压力会造成氧化型VCSEL的活化能与wearout生命周期相似于内嵌式VCSEL所发出的输出能量大小。”
当工业界要从研究和开发转至氧化型VCSEL的生产模式时,也产生了生产上的困难。氧化层的氧化率与铝的含量有非常大的关系。只要铝的含量有些微的变化,就会改变其氧化率而导致共振腔的规格会过大或过小于标准规格。
波长从1300nm至2000nm的长波长装置,至少已经证实其活化区是由磷化铟所构成。有更长波长的VCSEL是有实验根据的且通常为光学泵。1310nm的VCSEL在硅基光纤的最小波长限度中是较为理想的。
以上便是此次带来的VCSEL相关内容,通过本文,希望大家对VCSEL已经具备一定的了解。如果你喜欢本文,不妨持续关注我们网站哦,将于后期带来更多精彩内容。最后,十分感谢大家的阅读,have a nice day!