如何有效管理电路板的散热
扫描二维码
随时随地手机看文章
通过PCB板本身散热目前广泛应用的PCB板材是覆铜/环氧玻璃布基材或酚醛树脂玻璃布基材,还有少量使用的纸基覆铜板材。这些基材虽然具有优良的电气性能和加工性能,但散热性差,作为高发热元件的散热途径,几乎不能指望由PCB本身树脂传导热量,而是从元件的表面向周围空气中散热。但随着电子产品已进入到部件小型化、高密度安装、高发热化组装时代,若只靠表面积十分小的元件表面来散热是非常不够的。同时由于QFP、BGA等表面安装元件的大量使用,元器件产生的热量大量地传给PCB板,因此,解决散热的最好方法是提高与发热元件直接接触的PCB自身的散热能力,通过PCB板传导出去或散发出去。热敏感器件放置在冷风区。
温度检测器件放置在最热的位置。同一块印制板上的器件应尽可能按其发热量大小及散热程度分区排列,发热量小或耐热性差的器件(如小信号晶体管、小规模集成电路、电解电容等)放在冷却气流的最上流(入口处),发热量大或耐热性好的器件(如功率晶体管、大规模集成电路等)放在冷却气流最下游。在水平方向上,大功率器件尽量靠近印制板边沿布置,以便缩短传热路径;在垂直方向上,大功率器件尽量靠近印制板上方布置,以便减少这些器件工作时对其他器件温度的影响。设备内印制板的散热主要依靠空气流动,所以在设计时要研究空气流动路径,合理配置器件或印制电路板。
空气流动时总是趋向于阻力小的地方流动,所以在印制电路板上配置器件时,要避免在某个区域留有较大的空域。整机中多块印制电路板的配置也应注意同样的问题。对温度比较敏感的器件最好安置在温度最低的区域(如设备的底部),千万不要将它放在发热器件的正上方,多个器件最好是在水平面上交错布局。将功耗最高和发热最大的器件布置在散热最佳位置附近。不要将发热较高的器件放置在印制板的角落和四周边缘,除非在它的附近安排有散热装置。
在设计功率电阻时尽可能选择大一些的器件,且在调整印制板布局时使之有足够的散热空间。高发热器件加散热器、导热板当PCB中有少数器件发热量较大时(少于3个)时,可在发热器件上加散热器或导热管,当温度还不能降下来时,可采用带风扇的散热器,以增强散热效果。当发热器件量较多时(多于3个),可采用大的散热罩(板),它是按PCB板上发热器件的位置和高低而定制的专用散热器或是在一个大的平板散热器上抠出不同的元件高低位置。将散热罩整体扣在元件面上,与每个元件接触而散热。但由于元器件装焊时高低一致性差,散热效果并不好。通常在元器件面上加柔软的热相变导热垫来改善散热效果
随着电子设备性能的不断提升,散热问题成为了设计中不可忽视的一环。散热不良不仅会导致设备性能下降,还可能缩短设备的使用寿命。以下是十种提高PCB散热效率的策略。在布置元器件时,应将除温度检测器件以外的温度敏感器件放在靠近进风口的位置,并位于功率大、发热量大的元器件的风道上游,尽量远离发热量大的元器件,以避免辐射的影响。同时,将本身发热而又耐热的器件放在靠近出风口的位置或顶部,如果不能承受较高温度,也应放在进风口附近,并尽量与其他发热器件和热敏器件在空气上升方向上错开位置。大功率的元器件应尽量分散布局,避免热源集中,不同大小尺寸的元器件尽量均匀排列,使风阻均布,风量分布均匀。
尽管传统的PCB板材如覆铜环氧玻璃布基材在电气性能上表现出色,但其散热能力有限。为了应对高功率密度的挑战,现代PCB设计需要考虑板材的热传导性能。通过优化板材选择和布局,可以显著提高散热效率。对于高功率器件,单纯的PCB散热可能不足以满足需求。这时,可以采用散热器或导热板来辅助散热。对于多个发热器件,可以考虑定制散热罩或平板散热器,并使用热相变导热垫来提高接触效率。
因此,有效管理电路板的散热至关重要。PCB的散热起着至关重要的作用,所以让我们讨论一些PCB散热技术。广泛使用的散热PCB材料包括覆铜环氧玻璃布基板或酚醛树脂玻璃布基板,少数还使用纸基铜包板。虽然这些基板具有优异的电气和加工性能,但它们的散热性很差。作为高发热元件的冷却方式,几乎不可能依靠PCB树脂本身的热传导,而是将热量从元件表面散发到周围的空气中。但随着电子产品进入元器件小型化、高密度组装、高发热时代,仅仅依靠元器件的小表面积进行散热是远远不够的。同时,由于QFP和BGA等表面贴装元件的广泛使用,电子元件产生的热量被广泛传递到PCB上。因此,解决散热问题的最有效方法是增强PCB与发热元件直接接触的固有散热能力,从而允许热量通过PCB传导或散发。
在设计PCB时,应根据器件的发热量和耐热性进行分区排列。将耐热性差的器件放置在冷却气流的上游,而将耐热性好的器件放置在下游,以实现更有效的热管理。合理的走线设计对于散热同样重要。通过增加铜箔线路和导热孔,可以提高PCB的热传导效率。同时,计算PCB的等效导热系数,有助于评估和优化散热设计。在PCB布局中,大功率器件应尽可能靠近边缘布置,以缩短热传导路径。在垂直方向上,应将这些器件布置在上方,以减少对其他器件的影响。空气流动是PCB散热的关键。设计时应考虑空气流动路径,合理配置器件,避免在某些区域形成较大的空域,以促进空气流动。对于温度敏感的器件,应将其安置在温度较低的区域,避免直接放置在发热器件的上方,并在水平面上进行交错布局。
将功耗高和发热大的器件布置在散热条件最佳的位置附近,避免将它们放置在PCB的角落和边缘,除非有额外的散热装置。在PCB设计中,应避免功率密度过高的区域,以防止热点的形成。通过均匀分布功率,可以保持PCB表面温度的均匀性。除了传统的散热方法,还可以探索如热管、相变材料、微通道冷却等创新散热技术,以适应不断增长的散热需求。
在设计过程中,实现严格的均匀分布通常具有挑战性,但必须避免功率密度过高的区域。采取这种预防措施是为了防止出现可能对电路正常运行产生不利影响的热点。如果条件允许,对印刷电路进行热能分析是必不可少的。如今,在一些专业的PCB设计软件中加入热能指数分析软件模块,可以帮助设计工程师优化电路设计。
在现代高科技领域,PCB热管理技术的重要性日益凸显。正如伟大的建筑师在设计摩天大楼时必须考虑摩天大楼的稳定性一样,电子工程师在设计电路板时也必须关注热量的流动和分散。通过适当的布局,选择合适的散热材料,充分利用现代设计工具,我们可以在电子设备内部创建一个完美的“温控系统”,让每个组件在合适的温度下高效运行,散发出耀眼的光彩。