PWM控制(脉冲宽度调制)的基本原理是什么
扫描二维码
随时随地手机看文章
正弦脉宽调制法(SPWM)是将每一正弦周期内的多个脉冲作自然或规则的宽度调制,使其依次调制出相当于正弦函数值的相位角和面积等效于正弦波的脉冲序列,形成等幅不等宽的正弦化电流输出。其中每周基波(正弦调制波)与所含调制输出的脉冲总数之比即为载波比
由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PWM技术。 PWM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。采用PWM方式构成的逆变器,其输入为固定不变的直流电压,可以通过PWM技术在同一逆变器中既实现调压又实现调频。由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。又因为集调压、调频于一身,所以调节速度快、系统的动态响应好。此外,采用PWM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。 把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比为Y。此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果 [1]。
SPWM通过调制正弦波的宽度来生成PWM信号,常用于电机控制以实现平稳效果,其原理基于面积等效。SPWM,即正弦脉冲宽度调制,是一种广泛应用于电机驱动和逆变电源等领域的调制技术。它通过调制正弦波的宽度来生成具有特定波形的PWM信号,这种波形等效于正弦波,因此可以实现更平稳的控制效果。SPWM的基本原理是面积等效原理,即冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。在生成SPWM的过程中,通常采用两种采样方式:自然采样法和规则采样法。 采用自然采样法和规则采样法生成SPWM,单极性SPWM具有较低的高次谐波,并可调节电压和频率。自然采样法是根据需要调制的正弦波与载波锯齿波的交点来确定最终PWM脉冲的输出时间宽度,从而生成SPWM波。SPWM波可以根据PWM的电压极性分为单极性和双极性。
我们可以观察到,SPWM波呈现信号等幅、等周期但脉宽不等的脉冲序列特性。当调制波(即正弦波)的幅值发生变化时,SPWM脉冲信号的脉宽会相应调整,进而影响输出电压的大小。同时,若调制波的频率发生改变,输出信号的基波频率也会随之变化,从而实现了对电压和频率的双重调控。值得注意的是,与双极性SPWM相比,单极性SPWM在输出电压方面具有显著优势,其高次谐波分量远小于双极性SPWM。 双极性SPWM通过设置TIM定时器和调制比来生成不同占空比的正弦波形,并利用SPWM波表格生成软件实现波形控制。
双极性SPWM通过设置TIM定时器和调制比来生成不同占空比的正弦波形,并利用SPWM波表格生成软件实现波形控制。双极性SPWM波形的生成原理涉及多个环节。首先,通过计算设置TIM定时器的ARR寄存器的值,我们可以控制TIM定时器输出波形的频率,从而满足所需的SPWM频率。其次,需要设置调制比,即正弦波的幅值与载波(通常是锯齿波)的幅值之比。接着,利用SPWM波表格生成软件,我们可以预先生成正弦数据表。在实际的程序中,通过查表获取CCR的值,进而生成具有不同占空比的波形。这些步骤共同构成了双极性SPWM波形生成的基本原理。
PWM(Pulse Width Modulation)控制技术就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效的获得所需要的波形(含形状和幅值)。面积等效原理是PWM技术的重要基础理论。一种典型的PWM控制波形SPWM:脉冲的宽度按正弦规律变化。而和正弦波等效的PWM波形称为SPWM波。脉宽调制(PWM,Pulse Width Modulation)是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。 [1]PWM是一种对模拟信号电平进行数字编码的方法。通过高分辨率计数器的使用,方波的占空比被调制用来对一个具体模拟信号的电平进行编码。
开关电源一般都采用脉冲宽度调制(PWM)技术,其特点是频率高、效率高、功率密度高、可靠性高。然而,由于其开关器件工作在高频通断状态,高频的快速瞬变过程本身就是一电磁骚扰(EMD)源,它产生的EMI信号有很宽的频率范围,又有一定的幅度。若把这种电源直接用于数字设备,则设备产生的EMI信号会变得更加强烈和复杂。
控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等的脉冲,用这些脉冲来代替正弦波或所需要的波形,也就是在输出波形的半个周期中产生多个脉冲,使各脉冲的等值电压为正弦波形,所获得的输出平滑且低次谐波少,按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变,这种方式能使电源的输出电压在工作条件变化时保持恒定,是利用微处理器的数字信号对模拟电路进行控制的一种非常有效的技术,脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。
随着电子技术的发展,出现了多种脉冲宽度调制技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而在镍氢电池智能充电器中采用的脉宽PWM法,它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化,可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。PWM的特点是从处理器到被控系统信号都是数字形式的,无需进行数模转换,让信号保持为数字形式可将噪声影响降到最小,噪声只有在强到足以将逻辑1改变为逻辑0或将逻辑0改变为逻辑1时,也才能对数字信号产生影响。
对噪声抵抗能力的增强是PWM相对于模拟控制的另外一个优点,而且这也是在某些时候将PWM用于通信的主要原因,从模拟信号转向PWM可以极大地延长通信距离,在接收端,通过适当的RC或LC网络可以滤除调制高频方波并将信号还原为模拟形式。控制的方法有两大流派:模拟和数字。模拟的方法很简单,生成正弦波和三角波,直接输入比较器,产生高低电平控制管子开关。这个没啥好说的,搭电路的事。数字则也分两大流派,模拟模拟方法(两个模拟不同意思)的有自然采样法、规则采样法、不对称规则采样法。自然采样法是通过计算高频三角载波与正弦调制波的交点来确定开关切换点,以求出相应的脉冲宽度,而生成 SPWM波形的。本质上还是模拟那一套,不过由于脉宽计算公式是一个超越方程,采样点不能预先确定,只能通过数值迭代求解,所以用的很少。
随着工业自动化、智能制造等领域的不断发展,SPWM控制技术也在不断创新和完善。未来,SPWM控制技术将呈现以下发展趋势:
高精度化 :随着数字控制技术和传感器技术的不断进步,SPWM控制技术的精度将进一步提高。通过采用更高精度的传感器和更先进的控制算法,可以实现对电机运行状态的更精确监测和控制。
智能化 :人工智能技术的快速发展为SPWM控制技术的智能化提供了可能。未来,SPWM控制技术将更多地融入人工智能元素,如机器学习、神经网络等,以实现更智能的电机控制和优化。
网络化 :随着工业互联网和物联网技术的普及,SPWM控制技术将更加注重网络化。通过网络连接,可以实现远程监控、故障诊断和预测性维护等功能,提高系统的可靠性和维护效率。
绿色化 :在全球节能减排的背景下,绿色化成为SPWM控制技术的重要发展方向。通过优化控制策略和算法,降低电机的能耗和排放,实现绿色制造和可持续发展。
集成化 :随着微电子技术和集成电路技术的不断发展,SPWM控制技术的集成度将进一步提高。未来的SPWM控制系统将更加紧凑、轻便且易于安装和维护。
综上所述,SPWM控制技术作为一种先进的电机控制技术,在多个领域发挥着重要作用。通过不断创新和完善,SPWM控制技术将朝着高精度化、智能化、网络化、绿色化和集成化的方向发展,为工业自动化和智能制造等领域的发展提供更加坚实的技术支撑。