当前位置:首页 > 电源 > 电源AC/DC
[导读] 引言许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分

引言

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040等ADC的高动态范围、同时采样以及多通道优势。本文介绍了MAX11040的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。

高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

图1. 基于MAX11040的DAS在电网监控中的应用

从图1可以看到,采用两片MAX11040 ADC可以同时测量交流电的三相及零相的电压和电流。该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。数据流被送入内部数字滤波器处理,消除高频噪声。处理完成后可以得到高达24位的分辨率。

MAX11040为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。

MAX11040能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围;积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC;独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。

另外,MAX11040集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。输入端的阻/容(RC)滤波器结合MAX11040的数字低通滤波器,大大降低了MAX11040输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。表1列举了MAX11040的部分特性,关于MAX11040数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料。

表1. MAX11040 ADC的关键指标

电力线应用对ADC性能的要求

电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。而MAX11040的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040较低的输入量程以内,电路如图2所示。

连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。

对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。利用MAX11040的真差分输入大大降低共模噪声的影响。

图2. MAX11040在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。通道4接口电路采用差分设计,通道1采用单端设计。

PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源;为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。MAX11040的输入阻抗与时钟速率、ADC输入电容有关。连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。

R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << RIN)。

对于单端设计,图2中MAX11040通道1的输入电压VIN(f),可以利用式1计算:

(式1)

式中:VTR是CT和PT变压器的输出电压。RTR是变压器的等效阻抗。R1、R2构成电阻分压网络。RIN是MAX11040的输入阻抗。R2llRIN是R2和RIN的并联阻抗。C3为输入旁路电容。f是输入信号频率。VIN(f)是MAX11040的输入电压。

可以利用类似方法进行差分输入设计。

为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。电容应选取高精度陶瓷电容或薄膜电容。最好选择信誉较好的供应商购买这些元件,例如Panasonic®、Rohm®、Vishay®、Kemet®和AVX®等。

MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

函数发生器产生的±5V信号连接到MAX11040的通道2,而另一函数发生器产生的±10V信号连接到MAX11040的输入通道1。电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040。有关精度指标的详细信息,请参考MAX11040数据资料。

表2. 图3中的电阻和旁路电容计算 VTR

表2列出的计算值均来自式1的计算结果和图3定义的精确测量。表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的KCAL系数,计算公式如下:

校准系数KCAL按照式2计算:

KCAL = VTRMAX/(VADCMAX - VADC0) (式2)

式中:VTRMAX是输入最大值,分别代表±5V或±10V输入信号。VADCMAX是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VTRMAX。VADC0是测量、处理后的ADC值,MAX11040评估板设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的KCAL之间存在1%左右的误差。

所以,只是依靠理论计算还不足以支持实际要求;如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

表3所示结果验证了½ FSR输入信号的测量。利用高精度HP3458A万用表测量数据,利用式2中的校准系数KCAL得到ADC测量值和计算值。

表3. 验证½ FSR输入信号对应的测量结果

表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040测量值和KCAL处理、计算得到的数值。

结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。

结论

MAX11040等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。选择适当的信号调理电路,MAX11040能够满足甚至优于高级“智能”电网监控系统的指标要求¹。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭