当前位置:首页 > 电源 > 电源AC/DC
[导读] 1 AD9225的结构AD9225是ADI公司生产的单片、单电源供电、12位精度、25Msps高速模数转换器,片内集成高性能的采样保持放大器和参考电压源。AD9225采用带有误差校正逻辑的四级

1 AD9225的结构

AD9225是ADI公司生产的单片、单电源供电、12位精度、25Msps高速模数转换器,片内集成高性能的采样保持放大器和参考电压源。AD9225采用带有误差校正逻辑的四级差分流水结构,以保证在25Msps采样率下获得精确的12位数据。除了最后一级,每一级都有一个低分辨率的闪速A/D与一个残差放大器(MDAC)相连。此放大器用来放大重建DAC的输出和下一级闪速A/D的输入差,每一级的最后一位作为冗余位,以校验数字误差,其结构如图1所示。

图1 AD9225结构图

2 AD9225的输入和输出

(1) 时钟输入

AD9225采用单一的时钟信号来控制内部所有的转换,A/D采样是在时钟的上升沿完成。在25Msps的转换速率下,采样时钟的占空比应保持在45%~55%之间;随着转换速率的降低,占空比也可以随之降低。在低电平期间,输入SHA处于采样状态;高电平期间,输入SHA处于保持状态。图2为其时序图。图2中:

图2 AD9225时序图

tch——高电平持续时间,最小值为18 ns;
tcl——低电平持续时间,最小值为18 ns;
tod——数据延迟时间,最小值为13 ns。
从时序图可以看出:转换器每个时钟周期(上升沿)捕获一个采样值,三个周期以后才可以输出转换结果。这是由于AD9225采用的四级流水结构,虽然可以获得较高的分辨率,但却是以牺牲流水延迟为代价的。

(2) 模拟输入AD9225的模拟输入引脚是VINA、VINB,其绝对输入电压范围由电源电压决定:

其中, AVSS正常情况下为0 V,AVDD正常情况下为+5 V。

AD9225有高度灵活的输入结构,可以方便地和单端或差分输入信号进行连接。采用单端输入时,VINA可通过直流或交流方式与输入信号耦合,VINB要偏置到合适的电压;采用差分输入时,VINA和VINB要由输入信号同时驱动。

(3) 数字输出

AD9225 采用直接二进制码输出12位的转换数据,并有一位溢出指示位(OTR),连同最高有效位可以用来确定数据是否溢出。图3为溢出和正常状态的逻辑判断图。

图3 溢出和正常状态的逻辑判断图

3 AD9225参考电压和量程的选用

参考电压VREF决定了AD9225的量程,即

满刻度量程= 2×VREF

VREF的值由SENSE引脚确定。如果SENSE与AVSS 相连,VREF是2.0 V,量程是0~4 V;如果SENSE与VREF直接相连, VREF是1.0 V,量程是0~2 V;如果SENSE与VREF通过电阻网络相连,则VREF可以是1.0~2.0 V之间的任意值,量程是0~2VREF;如果SENSE与AVDD 相连,表示禁用内部参考源,即VREF由外部参考电压源驱动。内部电路用到的参考电压是出现在CAPT和CAPB端。表1是参考电压和输入量程的总结。

表1 参考电压和输入量程

4 AD9225的存储方案设计

在高速数据采集电路的实现中,有两个关键的问题:一是模拟信号的高速转换;二是变换后数据的存储及提取。AD9225的采样速度可达25Msps,完全可以满足大多数数据采集系统的要求,故首要解决的关键问题是与存储器的配合问题。 在数据采集电路中, 有以下几种存储方案可供选择。

(1)分时存储方案

分时存储方案的原理是将高速采集到的数据进行分时处理, 通过高速锁存器按时序地分配给N个存储器。虽然电路中增加了SRAM的片数,但使存储深度增加,用低价格的SRAM构成高速数据存储电路,获得较高的(单位速度×单位存储深度)/价格比。但由于电路单数据口的特点,不利于数据的实时处理,并且为使数据被锁存后留有足够的时间让存储器完成数据的存储,需要产生特殊的写信号线 。

(2)双端口存储方案

双端口存储器的特点是,在同一个芯片里,同一个存储单元具有相同的两套寻址机构和输入输出机构,可以通过两个端口对芯片中的任何一个地址作非同步的读和写操作,读写时间最快达到十几ns。当两个端口同时(5 ns以内 )对芯片中同一个存储单元寻址时, 芯片中有一个协调电路将参与协调。双端口存储器方案适用于小存储深度、数据实时处理的场合。由于双端口存储器本身具备了两套寻址系统,在电路的设计时,可以免去在数据存储和读取时对地址时钟信号的切换问题的考虑,使数据变得简单和快捷。

(3)先进先出存储方案

先进先出存储器的同一个存储单元配备有两个口:一个是输入口,只负责数据的写入;另一个是输出口,只负责数据的输出。先进先出(FIFO)存储器方案适用于小存储深度,数据需实时处理的场合。

对用户而言,存储器的存储速度和存储容量是一对矛盾体:双口RAM和FIFO可以实现很高的存储速度,但其存储容量难以满足对大量数据存储的需求;一般的静态RAM虽然速度有限,但其存储深度却是双口RAM和FIFO难以企及的,并且可以容易地实现多片扩展。对高速数据采集系统而言,由于采样速率快、数据多,要求存储深度比较大,实时处理的难度比较高,一般的静态RAM就可以满足速度要求。628512容量为512Kbit,存取时间70 ns,可以满足10Msps以上的采样要求,比较具有典型意义。图4是AD9225与628512的接口电路图,存储方案实际是分时存储的特例。

图4 AD9225与628512的接口图

AD9225输出的12位数据,再加溢出指示位OTR共13位与两片628512相连。两片628512组成并联结构,由同一地址发生器产生地址,同一写信号线控制写操作。20位地址发生器由五片同步计数器74161构成。注意,此处不能采用异步计数器,因为异步计数器的输出延时太大。

存储器的存储过程可以分解成三个过程来讨论:① 地址码加在RAM芯片的地址输入端,选中相应的存储单元,使其可以进行写操作。② 将要写入的数据放在数据总线上。③ 加上片选信号及写信号,这两个有效信号打开三态门,使DB上的数据进入输入回路,送到存储单元的位线上,从而写入该存储单元。

图4所示的接口电路中,地址码信息和数据码信息在同一时钟信号的上升沿产生,片选线由地址发生器的最高位(A19)提供。写信号线是接口的最关键部分,它必须保证在AD9225转换完成以后,在保持地址信息和数据信息不变的情况下,有足够的低电平持续时间完成存储操作。低速的数据采集系统可直接采用CLK作为写信号。高速ADC在使用时,对时钟的占空比要求很高。AD9225要求CLK的占空比在45%~55%之间,如果还直接采用CLK作为写信号,将难以满足要求。例如,如果采样速率为10 Msps,CLK的低电平持续时间仅为50 ns,小于628512的存储时间70 ns,因此,必须要对晶振信号进行适当的逻辑转换以获得足够的写周期。考虑到写信号仅在低电平状态有效,在产生信号时,可以尽量减少高电平的持续时间。经过多次仿真试验,作者采用图5所示的逻辑控制电路来获得相应的写信号。

图5 逻辑控制电路

对应于此逻辑电路的时序如图6所示。

图6 逻辑控制电路时序图

5 结论

本文详细介绍了一种高 速A/D转换芯片AD9225的结构和应用,在比较了各种高速数据采集系统的存储方案的基础上,给出了AD9225与628512存储器的接口电路。该电路实际上是高速ADC与一般RAM接口的缩影。在写信号的实现上,采用了控制逻辑,具有创新性和通用性。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭