当前位置:首页 > 模拟 > 模拟
[导读]以PM200DSA060型智能功率模块(IPM)为例,介绍IPM的结构,给出。IPM的外围驱动电路、保护电路和缓冲电路的设计方案,介绍PM200DSA060在单相逆变器中的应用。

摘  要:以PM200DSA060型智能功率模块(IPM)为例,介绍IPM的结构,给出。IPM的外围驱动电路、保护电路和缓冲电路的设计方案,介绍PM200DSA060在单相逆变器中的应用。
关键词:IPM:电路设计;PM200DSA060;逆变器

1 引言
    智能功率模块(Intelligent Power Module,IPM)以开关速度快、损耗小、功耗低、有多种保护功能、抗干扰能力强、无须采取防静电措施、体积小等优点在电力电子领域得到越来越广泛的应用。以PM200DSA060型IPM为例。介绍IPM应用电路设计和在单相逆变器中的应用。

2 IPM的结构
    IPM由高速、低功率IGWT、优选的门级驱动器及保护电路构成。其中,IGBT是GTR和MOSFET的复合,由MOSFET驱动GTR,因而IPM具有GTR高电流密度、低饱和电压、高耐压、MOSFET高输入阻抗、高开关频率和低驱动功率的优点。

    根据内部功率电路配置情况,IPM有多种类型,如PM200DSA060型:IPM为D型(内部集成2个IGBT).其内部功能框图如图1所示,内部结构如图2所示。内有驱动和保护电路,保护功能有控制电源欠压锁定保护、过热保护、过流保护和短路保护,当其中任一种保护功能动作时。IPM将输出故障信号FO。

    IPM内部电路不含防止干扰的信号隔离电路、自保护功能和浪涌吸收电路。为了保证IPM安全可靠。需要自己设计部分外围电路。

3 IPM的外部驱动电路设计
    IPM的外部驱动电路是IPM内部电路和控制电路之间的接口,良好的外部驱动电路对以IPM构成的系统的运行效率、可靠性和安全性都有重要意义。

    由IPM内部结构图可见.器件本身含有驱动电路.所以只要提供满足驱动功率要求的PWM信号、驱动电路电源和防止干扰的电气隔离装置即可。但是.IPM对驱动电路输出电压的要求很严格:驱动电压范围为13.5V~16.5V.电压低于13.5V将发生欠压保护.电压高于16.5V可能损坏内部部件;驱动信号频率为5Hz-20kHz,且需采用电气隔离装置。防止干扰:驱动电源绝缘电压至少是IPM极间反向耐压值的2倍(2Vces);驱动电流达19mA一26mA;驱动电路输出端的滤波电容不能太大.这是因为当寄生电容超过100pF时。噪声干扰将可能误触发内部驱动电路。

    图3所示是一种典型的高可靠性IPM外部驱动电路方案。来自控制电路的PWM信号经R1限流.再经高速光耦隔离并放大后接IPM内部驱动电路并控制开关管工作,FO信号也经过光耦隔离输出。其中每个开关管的控制电源端采用独立隔离的稳压。15V电源,且接1只10μF的退耦电容器(图中未画出)以滤去共模噪声。Rl根据控制电路的输出电流选取.如用DSP产生PWM.则R1的阻值可为330Ω。R2根据IPM驱动电流选值,一方面应尽可能小以避免高阻抗IPM拾取噪声.另一方面又要足够可靠地控制IPM。可在2kΩ~6.8kΩ内选取。C1为2端与地间的O.1μF滤波电容器,PWM隔离光耦的要求是tPLH<O.8μF,trm<0.8μF,CMR>10kV/μs,可选用HCPIA503型、HCPIA504型、PS204l型(NEC)等高速光耦,且在光耦输入端接1只O.1μ的退耦电容器(图中未画出)。FO输出光耦可用低速光耦(如PC817)。IPM的内部引脚功能如表1所示。


    图3的外部接口电路直接固定在PCB上且靠近模块输入脚.以减少噪声和干扰.PCB上布线的距离应适当,避免开关时干扰引起的电位变化。

    另外,考虑到强电可能造成外部驱动电路到IPM引线的干扰,可以在引脚1~4间,3~4间,4~5间根据干扰大小加滤波电容器。

4 IPM的保护电路设计
    由于。IPM本身提供的保护电路不具备自保护功能.所以要通过外围硬件或软件的辅助电路将内部提供的:FO信号转换为封锁IPM的控制信号.关断IPM,实现保护。

4.1 硬件

    IPM有故障时,FO输出低电平,通过高速光耦到达硬件电路,关断PWM输出,从而达到保护IPM的目的。具体硬件连接方式如下:在PWM接口电路前置带控制端的3态收发器(如74HC245)。PWM信号经过3态收发器后送至IPM接口电路.IPM的故障输出信号FO经光耦隔离输出送入与非门。再送到3态收发器使能端OE。IPM正常工作时.与非门输出为低电平。3态收发器选通;IPM有故障时。与非门输出为高电平。3态收发器所有输出置为高阻态。封锁各个IPM的控制信号.关断IPM.实现保护。

4.2 软件

    IPM有故障时.FO输出低电平,FO信号通过高速光耦送到控制器进行处理。处理器确认后。利用中断或软件关断IPM的PWM控制信号.从而达到保护目的。如在基于DSP控制的系统中.利用事件管理器中功率驱动保护引脚(PDPINT)中断实现对IPM的保护。通常1个事件管理器严生的多路PWM可控制多个IPM工作.其中每个开关管均可输出FO信号,每个开关管的FO信号通过与门.当任一开关管有故障时输出低电平,与门输出低电平.将该引脚连至PDPINT,由于PDPINT为低电平时DSP中断,所有的事件管理器输出引脚均被硬件设置为高阻态,从而达到保护目的。

    以上2种方案均利用IPM故障输出信号封锁IPM的控制信号通道.因而弥补了IPM自身保护的不足,有效地保护了器件。

5 IPM的缓冲电路设计
    在IPM应用中,由于高频开关过程和功率回路寄生电感等叠加产生的di/dt、dv/dt和瞬时功耗会对器件产生较大的冲击,易损坏器件.因此需设置缓冲电路(即吸收电路),目的是改变器件的开关轨迹,控制各种瞬态过压,降低器件开关损耗.保护器件安全运行。

    图4为常用的3种IPM缓冲电路。图4(a)为单只无感电容器构成的缓冲电路,对瞬变电压有效且成本低,适用于小功率IPM。图4(b)为RCD构成的缓冲电路,适用于较大功率IPM.缓冲二极管D可箝住瞬变电压,从而抑制由于母线寄生电感可能引起的寄生振荡。其RC时间常数应设计为开关周期的1/3,即r=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路,适用于大功率IPM。功能类似于图4(b)所示的缓冲电路,其回路电感更小。若同时配合使用图4(a)所示的缓冲电路。还能减小缓冲二极管的应力,缓冲效果更好。


    在图4(c)中,当IGBT关断时.负载电流经缓冲二极管向缓冲电容器充电,同时集电极电流逐渐减少,由于电容器二端的电压不能突变.所以有效地限制了IGBT集电极电压上升率dv/dt。也避免了集电极电压和集电极电流同时达到最大值。IGBT集电极母线电感、电路及其元件内部的杂散电感在IGBT开通时储存的能量,这时储存在缓冲电容器中。当IGBT开通时,集电极母线电感以及其他杂散电感又有效地限制了IGBT集电极电流上升率di/dt.同样也避免了集电极电压和集电极电流同时达到最大值。此时,缓冲电容器通过外接电阻器和IGBT开关放电,其储存的开关能量也随之在外接电阻器和电路、元件内部的电阻器上耗散。如此,便将IGBT运行时产生的开关损耗转移到缓冲电路.最后在相关电阻器上以热的形式耗散,从而保护IGBT安全运行。

    图4(c)中的电阻值和电容值按经验数据选取:如PM200DSA060的电容值为0.221xF~0.47xF,耐压值是IGBT的1.1倍~1.5倍,电阻值为10?—20?,电阻功率按P=fCU2xlO-6计算,其中f为IGBT工作频率,u为IGBT的工作峰值电压。C为缓冲电路与电阻器串联电容。二极管选用快恢复二极管。为了保证缓冲电路的可靠性,可以根据功率大小选择封装好的图4所示的缓冲电路。
 
    另外,由于母线电感、缓冲电路及其元件内部的杂散电感对IPM尤其是大功率IPM有极大的影响,因此愈小愈好。要减小这些电感需从多方面人手:直流母线要尽量地短;缓冲电路要尽可能地靠近模块;选用低电感的聚丙烯无极电容器、与IPM相匹配的快速缓冲二极管及无感泄放电阻器。

6 IPM在单相全桥逆变器中的应用
   
图5所示的单相全桥逆变电路主要由逆变电路和控制电路组成。逆变电路包括逆变全桥和滤波电路,其中逆变全桥完成直流到交流的变换.滤波电路滤除谐波成分以获得需要的交流电;控制电路完成对逆变桥中开关管的控制并实现部分保护功能。

    图中的逆变全桥由4个开关管和4个续流二极管组成,工作时开关管在高频条件下通断.开关瞬间开关管电压和电流变大,损耗大,结温升高,加上功率回路寄生电感、振荡及噪声等.极易导致开关管瞬间损坏,以往常用分立元件设计开关管的保护电路和驱动电路,导致电路庞大且不可靠。


    笔者采用一对PM200DSA060双单元IPM模块分别代替图中Vl、D1、V2、D2组合和V3、D3、v4、D4组合构成全桥逆变电路,利用DSP对IPM的控制,完成了中频率20kW、230V逆变器的设计和调试,采用了如上所述的驱动电路、图4(c)中的缓冲电路和基于DSP控制的软件IPM保护电路。设计实践表明:使用IPM可简化系统硬件电路、缩短系统开发时间、提高可靠性、缩小体积,提高保护能力。

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭