当前位置:首页 > 模拟 > 模拟
[导读]0 引言 LT6107是凌力尔特公司(Linear Technology Corporation)推出的一款简单小巧、多功能高压侧电流检测放大器,是一种简单易用的通用器件,具有高输入电压范围、高精度、宽工作温度范围、低失调电压、低电源电

0 引言
    LT6107是凌力尔特公司(Linear Technology Corporation)推出的一款简单小巧、多功能高压电流检测放大器,是一种简单易用的通用器件,具有高输入电压范围、高精度、宽工作温度范围、低失调电压、低电源电流等特性,是MP级器件,能够应用到自动装置、工业设施及电源管理等产品中,可满足汽车、军事和工业以及其他严酷环境中的应用需求。
    LT6107的最大输入偏置电流仅为40nA,失调电压仅有250μV,其增益可由两只外部电阻调节设置,精度高于1%,输入电压范围为2.7V~44V,能适应-55℃~+150℃的工作环境,工作电流仅为65μA。
    LT6107具有很低的检测电压。当VSENSE=0V时,输出电压永远为正,流过输出器件的静态输入失调电压和较小的总量电流仅为0.7μA~1.2μA。

1 引脚功能
    图1所示为LT6107的外形图,其引脚功能如下:


    OUT:电流输出端,该电流与外部检测电阻上的电压成正比。
    V-:通常接GND。
    -IN:内部检测放大器使-IN端上的电平与+IN端的相同,在V+和-IN端之间接电阻RIN可以设置输出电流IOUT,IOUT=VSENSE/RIN,其中的VSENSE为RSENSE上的检测电压。
    +IN:通过一个电阻与系统负载端相连。
    V+:IC的正电压供电端,直接与检测电阻相连,供电电流通过此端驱动IC工作,若仅监视系统负载电流,可将V+接到检测电阻的正端;若监视包含LT6107在内的所有工作电流,需将V+接到检测电阻的负端。

2 基本原理
    LT6107是通过检测外部检测电阻上的电压来实现对电流的监视。内部电路首先将外部检测电阻上的电压转变成输出电流,再在一个高共模电压上给出一个小的检测信号,并由它作为一个基准地。其低DC失调可以监视很小的检测电压,仅需在电路中连接一个很小的电阻,就可将功耗降至最低。其内部方框电路如图2。


    内部电流放大器环将-IN与+IN强拉到相同的电位,在-IN和V+之间接一支外部电阻RIN,这样当RIN的电位与RSENSE上的电位相同时,相应的电流VSENSE/RIN将流过RIN。检测放大器的高输入阻抗不会导通此电流,而通过内部的PNP管流向IOUT端。输出电流传输经由OUT端到达V-的电阻后,转变为电压信号到IC内,其电压为: VO=V-+IOUTXROUT,其增益值如表1所列。



3 基本应用
    LT6107通过对可调节检测电流的设置来监视电流,其检测电压是经可调增益放大得来的,而且是从正电源电压到基准地的线性变化的。加入一个输出滤波器,其输出信号也可以作为模拟信号使用。图3所示为LT6107的一个基本应用电路图。



4 硬件设计
4.1 外部电流检测电阻的选择
    外部检测电阻RSENSE对电流检测系统的功能有很大影响,因此必须小心谨慎地选择。首先,要考虑电阻的功耗。系统负载电流会引起发热及RSENSE上的电压损耗,因此检测电阻要尽可能地小,只需测出设备所需的动态范围即可。输入动态范围受LT6107初级侧DC输入失调电压的限制,在最大输入信号和最小所测信号时的动态范围是不同的。而且RSENSE必须足够小到其VSENSE不能超过LT6107的最大输入电压。比如,最大检测电压为100mV,如果外部峰值负载电流为2A,则RSENSE不能超过50mΩ。
    一旦最大RSENSE值确定下来,最小RSENSE值可由其精度或所需动态范围来决定,其最小信号也受输入失调电压的限制。例如LT6107失调电压为150μV,若最小电流为20mA,则检测电阻为7.5mΩ,其VSENSE就为150μv,即输入失调。大的检测电阻会减小由于失调造成的误差。当RSENSE为50mΩ时,其动态范围最大,在峰值负载(2A)时具有100mV的检测电压及3mA的输入失调负载电流误差,其功耗为200mW;当检测电阻为5mΩ时,其有效误差为30mA,此时的峰值检测电压(2A负载)为10mV,功耗仅20mW。
    当LT6107的失调电压为典型值:150μV时,可以为最大150 mV的检测电压提供60dB的动态范围,为最大0.5V的检测电压提供超过70dB的动态范围。这使得具有的低失调和相对较大的动态范围特性的LT6107能够适应更宽泛的应用场合。
    为降低功耗,-IN到+IN之间的检测电阻需采用凯尔文连接方法。在流过大电流时,焊锡连接和PC板的互连会引起较大的测量误差。10mmx 10mm平方的轨迹就有大约0.5mΩ的误差,而1mV的误差相当于2A电流流过此处。因此,需将检测线与高电流的路径隔离开来,以便减小误差,采用集成有检测电阻的凯尔文连接也是行之有效的方法,图4是推荐的一种连接方法。


4.2 外部输入电阻RIN的选择
    当系统所需的输出电流为1mA时,必须选择合适的RIN。RIN的最大值为500Ω。RIN取决于IOUT=1mA时所对应的最大检测电压,可由此得出最大输出动态范围。输出动态范围取决于最大允许输出电流和最大允许输出电压,可以将其作为最小实际的输出信号,如果该值低于所需的动态范围,可通过增加RIN来减小最大输出电流和功耗。若系统有非常宽的动态范围,而又需要小的检测电流,此时小RIN可带来较大的电流,电路也需用另外一种连接方法,见图5。用一支肖特基二极管与RSENSE并联,会降低大电流设备的精度,从而增加小电流的精度。


    值得注意的是,在设计RIN时,特别是有较小的RIN值,PCB上所有串联的电阻都会增加RIN的值,从而引起更大的误差。
4.3 外部输出电阻ROUT的选择
    在选择输出电阻时,必须首先考虑最大输出电压,如果随后的电路中有输入限制,比如:缓冲器或ADC,则ROUT必须满足IOUT(MAX)·ROUT低于电路的最大输入范围。
    此外,输出阻抗由ROUT决定,若所驱动的电路有足够的输入阻抗,那么输出阻抗不受限制。而若所驱动的电路的输入阻抗较低,或ADC有电流尖刺,则需低ROUT,以确保其输出精度。比如,输入阻抗是ROUT的100倍,则VOUT的精度将减小1%,如下:
   
4.4 误差的考虑
    1)误差源
    电流检测系统使用一个放大器和几个电阻来调节增益及电平位移。输出取决于放大器的特性,增益和输入失调由电阻调节,电路输出为:
   
    这种情况下的误差仅来自电阻的失配,且仅在增益上有误差。当然,失调电压及偏置电流也会引起其它误差。
    2)输出误差
    由放大器DC失调电压VOS导致的输出误差为:
   
    偏置电流流入内部运放的正输入,流入运放的负输入,由偏置电流和导致的输出误差为:
   
    例如,当IBIAS为60nA,RIN是1K,输入参考误差是60μV。注意,RSENSE=RIN时,RSENSE上会产生电压偏移,以消除,和EOUT(IBIAS)=0mV带来的误差。在多数应用中,RSENSE<<RIN,外部电阻,其偏置电流误差也就会最大限度地减小了,见图6的接法。


    若LT6107放大器的失调电流IOS为6nA,60μV的误差会减小到6μV。
    上文所述的会使电路的动态范围达到最大化,若想简化设计,也可不接。
    3)由增益差异导致的输出误差
    LT6107在输出电流为1mA时,其典型增益误差为0.25%。增益误差主要来自PNP输出晶体管的有限增益,这就使得在输出负载ROUT上不会出现像RIN上一样的小比率电流。
4.5 功耗的考虑
    LT6107的功耗会使芯片温度上升,可用结温来反映流过器件的供电电流和输出电流的大小。
   
   
    当工作电压到最高36V,且最大输出电流达到1mA时,总功耗为41mW,其结温比环境温度上升10℃。
注意,影响输出的因素有许多,LT6107至少要有1mA的输出,还必须限制最大输出电流,因此所选的检测电阻和必须合适,一旦输入有故障,外部会被钳制。
4.6 输出滤波
    为简化滤波器设计,这里将输出电压VOUT简化为IOUTXZOUT,因此只需适当的ZOUT就可设计出所需的滤波器,用于任意电路。例如,与ROUT并联的一个电容就能产生低通响应,减小不必要的输出噪声,还能为充电设备提供稳定的输出,驱动诸如MUX或ADC的开关电路。其输出电容器与输出电阻并联,会在输出响应点生成f-3dB,即:
   
4.7 供电连接
    V+端要接到检测电阻的一侧,并要满足下列条件:+IN≤V+和-IN≤V+。在正常工作条件下,VSENSE不得超出500mV。另外还需考虑V+-(+IN)≤500mV,参看图7,其反馈将会使-IN和+IN端的电压等于VS-VSENSE
    实际应用中,LT6107无法作反接保护,为了防止器件损坏,可以在回路中串接一支肖特基二极管,也可在输出串入电阻来保护输出,其电路分别如图8和图9所示。

 

本站声明: 本文章由作者或相关机构授权发布,目的在于传递更多信息,并不代表本站赞同其观点,本站亦不保证或承诺内容真实性等。需要转载请联系该专栏作者,如若文章内容侵犯您的权益,请及时联系本站删除。
换一批
延伸阅读

LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: 驱动电源

在工业自动化蓬勃发展的当下,工业电机作为核心动力设备,其驱动电源的性能直接关系到整个系统的稳定性和可靠性。其中,反电动势抑制与过流保护是驱动电源设计中至关重要的两个环节,集成化方案的设计成为提升电机驱动性能的关键。

关键字: 工业电机 驱动电源

LED 驱动电源作为 LED 照明系统的 “心脏”,其稳定性直接决定了整个照明设备的使用寿命。然而,在实际应用中,LED 驱动电源易损坏的问题却十分常见,不仅增加了维护成本,还影响了用户体验。要解决这一问题,需从设计、生...

关键字: 驱动电源 照明系统 散热

根据LED驱动电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。

关键字: LED 设计 驱动电源

电动汽车(EV)作为新能源汽车的重要代表,正逐渐成为全球汽车产业的重要发展方向。电动汽车的核心技术之一是电机驱动控制系统,而绝缘栅双极型晶体管(IGBT)作为电机驱动系统中的关键元件,其性能直接影响到电动汽车的动力性能和...

关键字: 电动汽车 新能源 驱动电源

在现代城市建设中,街道及停车场照明作为基础设施的重要组成部分,其质量和效率直接关系到城市的公共安全、居民生活质量和能源利用效率。随着科技的进步,高亮度白光发光二极管(LED)因其独特的优势逐渐取代传统光源,成为大功率区域...

关键字: 发光二极管 驱动电源 LED

LED通用照明设计工程师会遇到许多挑战,如功率密度、功率因数校正(PFC)、空间受限和可靠性等。

关键字: LED 驱动电源 功率因数校正

在LED照明技术日益普及的今天,LED驱动电源的电磁干扰(EMI)问题成为了一个不可忽视的挑战。电磁干扰不仅会影响LED灯具的正常工作,还可能对周围电子设备造成不利影响,甚至引发系统故障。因此,采取有效的硬件措施来解决L...

关键字: LED照明技术 电磁干扰 驱动电源

开关电源具有效率高的特性,而且开关电源的变压器体积比串联稳压型电源的要小得多,电源电路比较整洁,整机重量也有所下降,所以,现在的LED驱动电源

关键字: LED 驱动电源 开关电源

LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电)、低压直流、高压直流、低压高频交流(如电子变压器的输出)等。

关键字: LED 隧道灯 驱动电源
关闭